Connect with us

Published

on

I’ve been riding Ride1Up e-bikes since just about their first model. Over the many years since I first threw a leg over that bike, I’ve watched the company roll out an ever-increasing lineup of diverse e-bikes that all shared one common trend: great bang for your buck.

So when I was recently touring Asia to visit micromobility factories for a peek behind the curtain, I knew Ride1Up’s factory would be high on my list. They invited me out to join the company’s founder, Kevin Dugger, on a tour of the factory so I could see just how Ride1Up goes about ensuring they can keep the quality high and the prices low.

Like nearly every other e-bike company in the US, their bikes are produced in China. But you can get a wide range of quality across such a large country with vast manufacturing facilities. If you cheap out, you get cheap products. But if you design a production system with triple and quadruple quality-assurance inspections, you get well-made products that treat their owners right for years to come.

That’s the calculation Ride1Up made, and it’s paying dividends for the company in reducing customer issues and thus, customer complaints. And when you have as generous of a return policy as Ride1Up, you darn well better make sure people get their bikes in good shape and that those bikes last as long as riders expect them to.

My tour of Ride1Up’s factory took me straight onto the factory floor where parallel production lines were busy cranking out Ride1Up’s ultra-affordable $995 Portola folding e-bike on one side of the factory, and the company’s budget-priced $2,295 CF Racer1 carbon fiber road/gravel e-bike. And yes, when it comes to carbon fiber road and gravel e-bikes, 2 g’s is crazy low-priced.

To see a tour of the factory and learn the secrets behind making high-quality e-bikes, check out my video below. And don’t forget to keep reading below for even more detail!

Before parts get to either of those lines though, they first go through pre-check. Wheels are built up around motors and front hubs using automated lacing machines that then feed into automated checking robots to ensure they’re properly laced and tensioned.

Any wheel that doesn’t come out exactly right is shunted off to a side chute where a human inspector can evaluate it and send it back for reworking until it’s perfect.

The process combines both manual and automated tasks, drawing from the best of both types of resources.

Frames are inspected at this point too, having been sent in from another off-site welding and painting building (as Ride1Up’s factory is located in a lower-emissions area).

The frames are inspected for any paint knicks or imperfections, and any frames with issues are marked for repair before being sent off for assembly.

The rest of the frames move on to the assembly line.

Those pre-inspected frames are hoisted off to the initial assembly area by an elevated conveyor, where initial assembly will begin.

On the other side of the conveyer, a worker receives the frame and sets it up at its first station so that lights can be installed on the rear rack and internally run cables can be passed through the frame tubes.

Controllers are then installed into the frames, but only after being scanned into an intelligent management system that digitally pairs each component with the bike frame. This is used for accountability in the future. If a component is ever found to be defective, such as if a controller manufacturer reports back that a certain batch of 20 controllers has an issue, Ride1Up can instantly know which bikes may be affected and can trace that exact bike and controller to its owner, even months or years later.

The controllers are potted to make them waterproof

For the Portola folding e-bikes, the frames are then ready to be loaded on the assembly line’s conveyor system, which slowly moves down the line to each worker’s station.

The first step is to install the pedal drivetrain, which includes the bottom bracket, chainring, cranks, and pedals. Next the folding hardware is installed, followed by the kickstand and the rear wheel with the motor. Each component is held on using specially treated hardware designed for corrosion resistance, with bolts having thread locker compound applied to ensure they don’t shake loose.

The handlebars are then mounted to the frames along with the front fork. With the handlebars mounted, the wiring, shifter cable, and brake hoses can all be routed up to the bars. Wire wraps are applied to make the wiring hardness look neat and tidy, and then a battery is installed. Just like the controller, major parts like the motor and battery are also scanned and recorded so that documentation exists for each e-bike to maintain a record of its entire parts list.

The tools used in each step are also regularly calibrated using sophisticated electronic tools, ensuring that if a bolt requires 10 Nm of torque to be applied, the torque wrench is truly outputting 10 Nm of torque.

Reaching the end of the automated conveyor system, the e-bikes are flipped onto their wheels and rolled over to a finishing station, where another worker indexes the shifter, calibrating it so that all of the gears shift crisply and without jumping.

On this day, the parallel line was assembling the carbon fiber CF Racer1 e-bike. Only the most experienced workers are put on this assembly line due to the higher tolerances of carbon fiber bike work. There also aren’t any power tools used on this line; all of the assembly steps are performed using precision hand tools to avoid applying too much stress to the carbon fiber frame.

The general steps are similar to those seen on the first assembly line, but performed with an even higher level of sophistication. Frames are first visually inspected to weed out any imperfections before being hoisted along a hanging conveyor system to the assembly line. From there, workers install the controllers, batteries, wheels, handlebars, shifter, pedal drivetrain, and any other hardware.

After reaching the end of the assembly line, the bikes are rolled off to their own finishing area, where the brake lines are bled and the shifter is calibrated.

Once fully-assembled, both bike models are rolled off into their own corrals, where they await visual inspection. Quality testers go over the bike to inspect dozens of points and ensure they are assembled correctly.

Any issues are marked and the bikes are rolled off into a side corral for remediation. The intelligent tracking system also correlates the issue to the worker who performed that task, allowing the factory to root out systematic issues by immediately addressing any mistakes that a worker might make. Workers with few or no mistakes also get monetary bonuses to their salary, providing further incentive for the bikes to be assembled perfectly the first time.

The approved bikes are then passed onto the next stage of ride testing.

At this point, none of the e-bikes have any saddles. That’s because they’re all ride-tested to ensure all functions are working properly, and these workers use the same seats that are switched from bike to bike. The actual saddle that ships with the e-bike is added just before packaging, ensuring that when a customer eventually opens their e-bike, theirs are the first cheeks to grace that saddle.

Once the bikes pass their ride testing, they are considered complete, though they aren’t yet ready for packaging.

Before the e-bikes can be packed up, they first must go through a series of third-party inspections. These outside contracted inspectors aren’t Ride1Up’s factory employees, but actually work somewhat antagonistically with them. Their job is to redo all of the inspections and find anything that was missed in the several previous rounds of inspections.

Because they are technically not Ride1Up’s factory employees and instead come from an outside inspection agency, they approach the inspections differently and are better positioned to find any issues that could have slipped through the previous several rounds of in-house inspections.

Only once the e-bikes pass third-party inspections are they considered ready for boxing up. At that point, they head to the last conveyor belt of their journey, which sends them along a packaging routine that has been meticulously refined by Ride1Up over several years. The company has applied the experience of shipping tens of thousands of e-bikes to find ways to best protect the bikes while also minimizing the amount of plastic and foam used in the process.

As I looked through the packaging steps, I couldn’t find any foam traditionally used in bicycle packaging, and the only plastic I saw were the cable ties and a single piece of soft plastic used to protect the fork.

Interestingly, there was still one final inspection point applied even after boxing up the e-bikes. The entire box is precision weighed, which ensures it comes out to the exact right weight.

If a single component or piece of packaging was forgotten, the box would be too light and the factory would know there was an issue.

It’s just the cherry on top of an entire system full of redundant safety and quality inspections performed before, during, and after the assembly process.

I’ve seen a lot of e-bike factories in my years covering the industry, but it’s rare to see this many spot checks and quality assurances built into so many different areas of the production and assembly process.

The tour was a fascinating look behind the curtain of how Ride1Up builds its e-bikes, and helps answer the question of how they can offer so much value.

As a direct-to-consumer company, they have to offer e-bikes that work well right out of the box. These e-bikes are being shipped largely to private customers, not bike shops and professional assemblers. So they have to be ready to roll, without the need for repairs, right from day one. Anything else would result in a costly return process for Ride1Up.

Over the years, they have refined their system for building quality e-bikes that are built to last while still offering a reasonable price point for riders.

I’ve long touted the company’s quality and performance from my own testing of their various e-bike models. But that was always merely the end of the story – riding the finished product. Now, having seen the assembly and quality inspections firsthand, I can finally vouch for their professionalism from the very start of the process.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

There’s a big problem with McClaren’s ‘World’s most powerful trail-legal’ electric mountain bike

Published

on

By

There's a big problem with McClaren's 'World's most powerful trail-legal' electric mountain bike

McClaren, better known for its high-performance sports cars, has just announced a series of new electric bikes, including what the company calls the “World’s most powerful trail-legal” electric mountain bike.

The new carbon fiber e-bike models include two full-suspension electric mountain bikes known as the Extreme 600 and the Extreme 250, as well as two hardtail eMTBs known as the Sport 600 and the Sport 250.

Both bikes feature mid-drive motors, with the power rating matching the monikers to offer 600 and 250 Watts of power, respectively.

The lower power 250W versions are likely intended to meet regulations for the European market, where stricter e-bike laws limit most models to 250 watts of power, or roughly one-third of a horsepower.

The 600W models take advantage of looser regulations in markets that allow more power, such as in North America.

The only problem is that McClaren’s marketing line of being the “world’s most powerful trail-legal electric mountain bikes” is, at best, misleading, and at worst, patently false.

The issue is that for European e-bikes, 250W is the legal limit for both on-road and trail usage. So if you’ve got a 250W e-bike, you’ve basically tied every single other e-bike on the market for highest power. Of course, none of the 250W e-bikes rolling around today actually put out only 250W of power. They all sneak by with higher peak power ratings, but the continuous power ratings are all identical. Thus, claiming to have the world’s most powerful trail-legal electric mountain bike is a bit like claiming to sell the world’s tallest 6-foot ladder.

When you look at the US market, it’s even more problematic. E-bikes in the US fall under various regulations depending on the state, but most areas use a 3-class system. And to make things simple, all three classes allow up to 750 watts of power.

If you’re on private property, it doesn’t really matter how much power your e-bike has. ‘Murica! But if you’re on public property, like public roads or trails on state land, you’re likely going to be limited to that 750W of power in most places. Thus, claiming that a 600W e-bike is the world’s most powerful trail-legal e-bike is obviously quite problematic in the land of 750W e-bikes.

If we are to consider peak power, McClaren claims that its 600W mid-drive motor actually peaks at 852W. That’s impressive, but still below the peak power of dozens of e-bike models in the US that peak in the four digits.

What McClaren might be referring to is torque, and the 600W version of their new e-bike does make an impressive claim of 161 Nm, one of the highest figures in the industry. But it takes more than being “one of the highest” to park at the top of the podium. For example, other trail-legal e-bikes, such as Optibike’s Class 1 RIOT eMTB, claim 190 Nm of torque.

But marketing untruths aside, we might as well take a look at what McClaren is offering. We’re already here, as it were.

For a starting price of just US $7,950, you can throw a leg over the Sport 250, the lower-power hardtail model. That ticket price gets you entry to a carbon fiber frame and a 250W mid-drive motor with a claimed 121 Nm of torque. That’s pretty darn torquey, though it still doesn’t surpass several other mid-drive e-bikes we’ve seen.

Garnished with a 12-speed SRAM GX Eagle drivetrain and SRAM G2 RE quad-piston hydraulic disc brakes, the bike certainly looks ready for action. The 36V battery isn’t huge at just 540 Wh, but the bike is intended for pedalers, so it’s likely to still offer good range on the trails. This isn’t a motorcycle in a bike frame like many we’ve seen.

Rounding out the major components are a RockShox Pike Rush RC fork, a color display embedded in the carbon fiber handlebars, and a carbon wheelset to match, complete with a set of Pirelli Scorpion Enduro M 29×2.4″ tires.

The bike comes in three sizes and offers a two-year warranty.

And the prices only go up from there. Upgrading to the more powerful Sport 600 bumps the price to US $8,950.

The full-suspension bikes are even pricier, with the Extreme 250 coming in at US $10,950 and the Extreme 600 topping the lineup at US $11,950.

To be fair, you do get the more premium wireless 12-speed SRAM XX Eagle AXS transmission on the higher-end model, as well as a wireless dropper post and a nicer RockShox Lyrik Rush RC fork, but that’s still a pretty penny.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Caterpillar is putting MASSIVE 240-ton electric haul truck to work in Vale mine

Published

on

By

Caterpillar is putting MASSIVE 240-ton electric haul truck to work in Vale mine

Mining company Vale is turning to Caterpillar to provide this massive, 240-ton battery-electric haul truck in a bid to slash carbon emissions at its mines by 2030.

Caterpillar and Vale have signed an agreement that will see the Brazilian mining company test severe-duty battery electric mining trucks like the 793 BEV (above), as well as V2G/V2x energy transfer systems and alcohol-powered trucks. The test will help Vale make better equipment choices as it works to achieve its goals of reducing direct and indirect carbon emissions 33% by 2030 and eliminating 100% of its net emissions by 2050.

If that sounds weird, consider that most cars and trucks in Brazil run on either pure ethyl alcohol/ethanol (E100) or “gasohol” (E25).

“We are developing a portfolio of options to decarbonize Vale’s operations, including electrification and the use of alternative fuels in the mines. The most viable solutions will be adopted,” explains Ludmila Nascimento, energy and decarbonization director Vale. “We believe that ethanol has great potential to contribute to the 2030 target because it is a fuel that has already been adopted on a large scale in Brazil, with an established supply network, and which requires an active partnership with manufacturers. We stand together to support them in this goal.”

Vale will test a 240-ton Cat 793 battery-electric haul truck at its operations in Minas Gerais, and put energy transfer solutions to a similar tests at Vale’s operations in Pará over the next two-three years. Caterpillar and Vale have also agreed to a joint study on the viability of a dual-fuel (ethanol/diesel) solution for existing ICE-powered assets.

Vale claims to be the world’s largest producer of iron ore and nickel, and says it’s committed to an investment of between $4 billion to $6 billion to meet its 2030 goal.

Cat 793 electric haul truck

During its debut in 2022, the Cat 793 haul truck was shown on a 4.3-mile test course at the company’s Tucson proving grounds. There, the 240-ton truck was able to achieve a top speed of over 37 mph (60 km/h) fully loaded. Further tests involved the loaded truck climbing a 10% grade for a full kilometer miles at 7.5 mph before unloading and turning around for the descent, using regenerative braking to put energy back into the battery on the way down.

Despite not giving out detailed specs, Caterpillar reps reported that the 793 still had enough charge in its batteries for to complete more testing cycles.

Electrek’s Take

Caterpillar-electric-mining-truck
Cat 793 EV at 2022 launch; via Caterpillar.

Electric equipment and mining to together like peanut butter and jelly. In confined spaces, the carbon emissions and ear-splitting noise of conventional mining equipment can create dangerous circumstances for miners and operators, and that can lead to injury or long-term disability that’s just going to exacerbate a mining operation’s ability to keep people working and minerals coming out of the ground.

By working with companies like Vale to prove that forward-looking electric equipment can do the job as well as well as (if not better than) their internal combustion counterparts, Caterpillar will go a long way towards converting the ICE faithful.

SOURCES | IMAGES: Caterpillar, Construction Equipment, and E&MJ.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Argonne Nat’l Lab is spending big bucks to study BIG hydrogen vehicles

Published

on

By

Argonne Nat'l Lab is spending big bucks to study BIG hydrogen vehicles

Argonne National Laboratory is building a new research and development facility to independently test large-scale hydrogen fuel cell systems for heavy-duty and off-road applications with funding from the US Department of Energy.

The US Department of Energy (DOE) is hoping Argonne Nat’l Lab’s extensive fuel cell research experience, which dates back to 1996, will give it unique insights as it evaluates new polymer electrolyte membrane (PEM) fuel cell systems ranging from 150 to 600 kilowatts for use in industrial vehicle and stationary power generation applications.

The new Argonne test facility will help prove (or, it should be said, disprove) the validity of hydrogen as a viable fuel for transportation applications including heavy trucks, railroad locomotives, marine vessels, and heavy machines used in the agriculture, construction, and mining industries.

“The facility will serve as a national resource for analysis and testing of heavy-duty fuel cell systems for developers, technology integrators and end-users in heavy-duty transportation applications including [OTR] trucks, railroad locomotives, marine vessels, aircraft and vehicles used in the agriculture, construction and mining industries,” explains Ted Krause, laboratory relationship manager for Argonne’s hydrogen and fuel cell programs. “The testing infrastructure will help advance fuel cell performance and pave the way toward integrating the technology into all of these transportation applications.”

The Hydrogen and Fuel Cell Technologies Office (HFTO) of DOE’s Office of Energy Efficiency and Renewable Energy is dedicating about $4 million to help build the new Argonne facility, which is set to come online next fall.

Electrek’s Take

Medium-sized Hydrogen FC excavator concept; via Komatsu.

It’s going to be hard to convince me that the concentrated push for a technology as inefficient as hydrogen fuel cells has more to do with any real consumer or climate benefit than it does keeping the throngs of people it will take to manufacture, capture, transport, store, house, and effectively dispense hydrogen gainfully employed through the next election cycle.

As such, while case studies like the hydrogen combustion-powered heavy trucks that have been trialed at Anglo American’s Mogalakwena mine since 2021 (at top) and fuel cell-powered concepts like Komatsu’s medium-sized excavator (above) have proven that hydrogen as a fuel can definitely work on a job site level while producing far fewer harmful emissions than diesel, I think swappable batteries like the ones being shown off by Moog Construction and Firstgreen have a far brighter future.

Speaking of Moog, we talked to some of the engineers being their ZQuip modular battery systems on a HEP-isode of The Heavy Equipment Podcast a few months back. I’ve included it, below, in case that’s something you’d like to check out.

SOURCES | IMAGES: ANL, Komatsu, and NPROXX.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending