Connect with us

Published

on

Originally published on RMI.org.
By John Matson

The White House on May 17 announced a slate of new programs aimed at integrating US buildings into the clean energy economy. The initiatives include electrification programs for existing homes, workforce training for next-generation jobs in the buildings sector, and efforts to increase the adoption of efficient electric heat pumps and EV fast chargers.

Alongside the plans for job training and building electrification, the announcement also highlighted the Biden administration’s goals for grid-interactive efficient buildings — a less well-known approach that has significant potential to reduce carbon emissions.

In this blog post, we’ll explore what grid-interactive efficient buildings are and why they feature so prominently in plans for a clean energy future.

What Are Grid-Interactive Efficient Buildings?

A grid-interactive efficient building (GEB) continuously optimizes energy use by combining efficiency measures such as LED lighting, efficient heat pumps, and high-performance windows with smart technologies such as solar, battery storage, and integrated building controls. Rather than simply consuming energy from the grid based on the building’s baseline energy use and occupant demands, a GEB interacts with the grid to continuously manage its demand in response to key signals from the electric utility.

To save money, reduce strain on the grid, or limit carbon emissions from electricity generation, a GEB might shed load (e.g., automatically dimming LED lights throughout the building) or shift its load from one time to another (e.g., drawing from on-site batteries rather than the grid) in a practice known as demand flexibility, or load flexibility.

What Is Demand Flexibility?

Demand flexibility is a building’s ability to shed or time-shift its energy demand in response to near-real-time signals about conditions on the grid. Demand flexibility signals can include the current price of electricity, the availability of renewable energy sources such as solar and wind, and the carbon intensity of the current energy mix. For instance, a GEB might employ demand flexibility to shift its peak electricity demand to a time of day when solar energy is abundant and might otherwise be curtailed.

Demand flexibility offers significant promise for reducing the carbon emissions from building operations, especially as the grid integrates more distributed energy resources. But the benefits can extend beyond cost and carbon savings. As detailed in a new RMI insight brief, buildings that flex their demand can shift energy away from peak usage times, when utilities often rely on fossil-burning “peaker” plants to help meet surging demand. Demand flexibility can therefore reduce the need for these peaker plants, eliminating not only their carbon emissions but also their significant contributions to air pollution.

What Are the Potential Benefits of GEBs?

The potential energy, emissions, and cost savings from combining energy efficiency and demand flexibility in GEBs are substantial. Buildings account for more than 70 percent of US electricity consumption and at least one-third of US emissions, according to the US Department of Energy’s Building Technologies Office (BTO). A new GEB roadmap from the BTO estimates that smarter, more efficient buildings can eliminate 80 million tons of CO2 emissions annually by 2030, reducing the emissions of the entire US power sector by 6 percent. The emissions savings from GEBs would be equivalent to retiring more than 50 midsize coal plants or taking 17 million cars off the road.

Widespread adoption of GEB technologies would reduce peak loads on the grid, which would in turn reduce the needed capacity of the grid to meet those demands. The cost savings of GEBs would therefore extend beyond the owners and tenants of the GEBs themselves. By 2040, the BTO calculates, GEBs could save the US power system more than $100 billion in cumulative electricity generation and transmission costs.

What Are the New US Goals for GEBs?

In the GEB roadmap, released May 17 in conjunction with the White House announcement, the US Department of Energy laid out a goal of tripling the energy efficiency and demand flexibility of buildings by 2030, relative to 2020 levels. To reach that goal, the roadmap articulates 14 recommendations, from enhancing R&D for smart-building technologies to policy options for encouraging integration of GEB practices.

Among the roadmap’s recommendations is that government agencies should “lead by example” — deploying GEB measures in government-owned buildings to demonstrate the benefits and provide valuable insights and best practices for more widespread deployment. Already, the vast majority of US states have adopted requirements for energy usage or efficiency in government buildings, and demand flexibility could become a valuable tool for meeting those requirements.

At the federal level, the savings from GEBs would be significant. The US General Services Administration (GSA) is the nation’s largest landlord, with nearly 10,000 buildings and more than 375 million square feet of real estate under its control. In a 2019 cost-benefit analysis, RMI found that the GSA could save $50 million annually (about 20 percent of its energy expenditures) by implementing GEB measures across its portfolio of buildings. In all six locations that RMI studied in the GSA analysis, the payback period for GEB improvements was less than four years (and in some cases less than a year), demonstrating the soundness of the investment for the government and for taxpayers.

Next Steps at the Federal Level

A new report from the National Renewable Energy Laboratory (NREL) provides a blueprint for the GSA to select buildings that are ideal candidates for cost-effective GEB projects. The report also lays out strategies and best practices for integrating GEB measures into the various phases of contract development for energy-focused building retrofits.

The NREL report notes that the sheer number of buildings managed by the GSA would allow the agency to screen its real estate portfolio for the highest-value GEB candidates before applying the early lessons learned in implementing GEB measures in performance contracts. NREL also notes that the buildings with the greatest economic potential for grid-interactive efficiency tend to share features such as time-of-use energy rates, high demand charges for a building’s peak energy usage, or utility or state programs that incentivize utility customers to be responsive in their energy demand.

One of the challenges identified by the new reports from BTO and NREL is the maturity and availability of some technologies that would optimize GEB implementation. Systems for coordinated, whole-building automation in response to signals from the grid are among the emerging technologies that will be needed to maximize GEBs’ benefits. The GSA’s Proving Ground program is evaluating some of these building control systems in demonstration projects, and the learnings from those evaluations should help to further shape best practices for implementing GEB projects nationwide.

The Path to 2030 and Beyond

By integrating energy efficiency, distributed energy generation technologies, and demand flexibility into its buildings, the GSA can help to advance the state of the art in grid-interactive efficient buildings. The proof points from GEB projects in the federal government’s building portfolio will not only help advance the DOE goal of tripling demand flexibility and efficiency measures by 2030. They should also make for a cleaner, more resilient grid powering smarter, more efficient buildings—all while saving taxpayers money.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

I found this cheap Chinese e-cargo trike that hauls more than your car!

Published

on

By

I found this cheap Chinese e-cargo trike that hauls more than your car!

If you’ve ever wondered what happens when you combine a fruit cart, a cargo bike, and a Piaggio Ape all in one vehicle, now you’ve got your answer. I submit, for your approval, this week’s feature for the Awesomely Weird Alibaba Electric Vehicle of the Week column – and it’s a beautiful doozie.

Feast your eyes on this salad slinging, coleslaw cruising, tuber taxiing produce chariot!

I think this electric vegetable trike might finally scratch the itch long felt by many of my readers. It seems every time I cover an electric trike, even the really cool ones, I always get commenters poo-poo-ing it for having two wheels in the rear instead of two wheels in the front. Well, here you go, folks!

Designed with two front wheels for maximum stability, this trike keeps your cucumbers in check through every corner. Because trust me, you don’t want to hit a pothole and suddenly be juggling peaches like you’re in Cirque du Soleil: Farmers Market Edition.

Advertisement – scroll for more content

To avoid the extra cost of designing a linked steering system for a pair of front wheels, the engineers who brought this salad shuttle to life simply side-stepped that complexity altogether by steering the entire fixed front end. I’ve got articulating electric tractors that steer like this, and so if it works for a several-ton work machine, it should work for a couple hundred pounds of cargo bike.

Featuring a giant cargo bed up front with four cascading fruit baskets set up for roadside sales, this cargo bike is something of a blank slate. Sure, you could monetize grandma’s vegetable garden, or you could fill it with your own ideas and concoctions. Our exceedingly talented graphics wizard sees it as the perfect coffee and pastry e-bike for my new startup, The Handlebarista, and I’m not one to argue. Basically, the sky is the limit with a blank slate bike like this!

Sure, the quality doesn’t quite match something like a fancy Tern cargo bike. The rim brakes aren’t exactly confidence-inspiring, but at least there are three of them. And if they should all give out, or just not quite slow you down enough to avoid that quickly approaching brick wall, then at least you’ve got a couple hundred pounds of tomatoes as a tasty crumple zone.

The electrical system does seem a bit underpowered. With a 36V battery and a 250W motor, I don’t know if one-third of a horsepower is enough to haul a full load to the local farmer’s market. But I guess if the weight is a bit much for the little motor, you could always do some snacking along the way. On the other hand, all the pictures seem to show a non-electric version. So if this cart is presumably mobile on pedal power alone, then that extra motor assist, however small, is going to feel like a very welcome guest.

The $950 price is presumably for the electric version, since that’s what’s in the title of the listing, though I wouldn’t get too excited just yet. I’ve bought a LOT of stuff on Alibaba, including many electric vehicles, and the too-good-to-be-true price is always exactly that. In my experience, you can multiply the Alibaba price by 3-4x to get the actual landed price for things like these. Even so, $3,000-$4,000 wouldn’t be a terrible price, considering a lot of electric trikes stateside already cost that much and don’t even come with a quad-set of vegetable baskets on board!

I should also put my normal caveat in here about not actually buying one of these. Please, please don’t try to buy one of these awesome cargo e-trikes. This is a silly, tongue-in-cheek weekend column where I scour the ever-entertaining underbelly of China’s massive e-commerce site Alibaba in search of fun, quirky, and just plain awesomely weird electric vehicles. While I’ve successfully bought several fun things on the platform, I’ve also gotten scammed more than once, so this is not for the timid or the tight-budgeted among us.

That isn’t to say that some of my more stubborn readers haven’t followed in my footsteps before, ignoring my advice and setting out on their own wild journey. But please don’t be the one who risks it all and gets nothing in return. Don’t say I didn’t warn you; this is the warning.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OPEC+ members agree to larger-than-expected oil production hike in August

Published

on

By

OPEC+ members agree to larger-than-expected oil production hike in August

The OPEC logo is displayed on a mobile phone screen in front of a computer screen displaying OPEC icons in Ankara, Turkey, on June 25, 2024.

Anadolu | Anadolu | Getty Images

Eight oil-producing nations of the OPEC+ alliance agreed on Saturday to increase their collective crude production by 548,000 barrels per day, as they continue to unwind a set of voluntary supply cuts.

This subset of the alliance — comprising heavyweight producers Russia and Saudi Arabia, alongside Algeria, Iraq, Kazakhstan, Kuwait, Oman and the United Arab Emirates — met digitally earlier in the day. They had been expected to increase their output by a smaller 411,000 barrels per day.

In a statement, the OPEC Secretariat attributed the countries’ decision to raise August daily output by 548,000 barrels to “a steady global economic outlook and current healthy market fundamentals, as reflected in the low oil inventories.”

The eight producers have been implementing two sets of voluntary production cuts outside of the broader OPEC+ coalition’s formal policy.

One, totaling 1.66 million barrels per day, stays in effect until the end of next year.

Under the second strategy, the countries reduced their production by an additional 2.2 million barrels per day until the end of the first quarter.

They initially set out to boost their production by 137,000 barrels per day every month until September 2026, but only sustained that pace in April. The group then tripled the hike to 411,000 barrels per day in each of May, June, and July — and is further accelerating the pace of their increases in August.

Oil prices were briefly boosted in recent weeks by the seasonal summer spike in demand and the 12-day war between Israel and Iran, which threatened both Tehran’s supplies and raised concerns over potential disruptions of supplies transported through the key Strait of Hormuz.

At the end of the Friday session, oil futures settled at $68.30 per barrel for the September-expiration Ice Brent contract and at $66.50 per barrel for front month-August Nymex U.S. West Texas Intermediate crude.

Continue Reading

Environment

Podcast: Trump/GOP go after EV/solar, Tesla, Ford, GM EV sales, Electrek Formula Sun, and more

Published

on

By

Podcast: Trump/GOP go after EV/solar, Tesla, Ford, GM EV sales, Electrek Formula Sun, and more

In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Trump’s Big Beautiful bill becoming law and going after EVs and solar, Tesla, Ford, and GM EV sales, Electrek Formula Sun, and more

Today’s episode is brought to you by Bosch Mobility Aftermarket—A global leader and trusted provider of automotive aftermarket parts. To celebrate Amazon Prime Day July 8th through 11th, Bosch Mobility is offering exclusive savings on must-have auto parts and tools. Learn more here.

The show is live every Friday at 4 p.m. ET on Electrek’s YouTube channel.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

Advertisement – scroll for more content

After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:

We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the podcast:

Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET:

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending