Connect with us

Published

on

In physics, a flywheel is a rotating disk that stores kinetic energy in its momentum and then spins that energy out to a nearby engine. In the context of business, as the flywheel rotates, it increases output or revenue without increasing input or cost.

Tesla, best known for being an all-electric car company, is, well, much more than just a car company. It has disrupted a legacy industry with a new business model and consumer approach. But Tesla didn’t stop there. It expanded to new industries, grabbed a stake in key infrastructure sectors, worked to decentralize power distribution, and now offers a new alternative to today’s utility industry. Tesla’s end products are state-of-the-technological-art — all of which interconnect in a flywheel that incites consumer allegiance across multiple sectors and keeps those consumers coming back to Tesla for more — in a flywheel effect, essentially.

Tesla’s mission statement is: “to accelerate the advent of sustainable transport by bringing compelling mass-market electric cars to market as soon as possible.” Today, Tesla builds not only all-electric vehicles, but also scalable clean energy generation and storage products, all part of a business model that prods the world to stop relying on fossil fuels and move towards a zero-emission future.

The intersecting notions of a flywheel in this article were inspired by Post Corona — From Crisis to Opportunity, by Scott Galloway (2020). The book draws upon the metaphor to suggest that, when today’s consumers are introduced to one product within a brand, they are more likely to purchase other products within that same brand. Companies today, Galloway explains, should be focusing on the reciprocal nature of consumerism so that the lure of one product leads consumers to other, different products made by the same company.

In the book, the author, an NYU Stern School of Business professor, unpacks how “tech” used to be a “narrowly defined industry consisting of companies that made computer hardware and software, which companies in ‘other’ industries bought for their business.” No longer is tech so specifically grounded. As an example, Galloway explains that combined tech/auto company Tesla appeals “through every aspect of its strategy: pricing, production, marketing, and even its leadership.”

In a February regulatory filing, Tesla acknowledged CEO Elon Musk’s numerous commitments. “Although Mr. Musk spends significant time with Tesla and is highly active in our management, he does not devote his full time and attention to Tesla,” the filing indicated. It described Musk’s leadership in SpaceX and “other emerging technology ventures.” Musk’s influence extends beyond Tesla to a company that merges the human brain with computers, Neuralink, along with a tunnel-building firm, The Boring Company.

In essence, the Tesla flywheel concept suggests that a person who purchases a Tesla Model 3 is more likely to add range at a Tesla Supercharger and eat at a Tesla restaurant. Later, when growing into other renewable energy options, that same consumer is more likely to choose Tesla Solar and Powerwalls over a competitor’s offerings. And who knows what else?

The Tesla flywheel concept makes the company very appealing to some investors. In fact, Canaccord Genuity estimates that Tesla will reach $8 billion in revenue by 2025.

Tesla Energy Storage alongside Use

The Tesla company website acknowledges that “electric cars, batteries, and renewable energy generation and storage already exist independently, but when combined, they become even more powerful.” That confluence is the essence of the Tesla flywheel.

EVs and other renewable energy sources rely on batteries, and Tesla has refused to relinquish its full autonomy as it grows into different products and sectors. As elsewhere, Tesla is planning for its own battery production in China and has been advertising for technicians for its Shanghai facility in recent months, part of better per unit profitability in the region.

The Tesla Energy division provides stationary storage batteries for residential (Powerwall), commercial (Powerpack), and utility-scale (Megapack) applications. Musk has noted on several occasions that Tesla Energy could someday become bigger than Tesla’s automobile business.

Storage is not just about enabling renewable energy — it’s also an important tool for ensuring the reliability of the grid, smoothing out peaks in demand for power, and preventing sudden surges that can overload local distribution systems.

Tesla’s Core Electric Vehicle Catalog

New regulations on safety and vehicle emissions, technological advances, and shifting customer expectations are bringing electric vehicles (EVs) into the consumer transportation mainstream. The Tesla flywheel is evident within its EV business model, which is based on 3 levels of consumer service: selling, servicing, and charging its electric vehicles, which maintains control over sales and service.

The Washington Post says that Musk’s “impulsive leadership” has vaulted Tesla from its initial entry “as an upstart electric vehicle pioneer to the world’s most valuable automaker.” Fortune named him its 2020 Businessperson of the Year.

An international network of Tesla-owned showrooms and galleries, mostly in urban centers, is based on direct sales and service, not franchised dealerships. The showrooms are complemented by internet sales as well as Service Plus centers. In some areas, Tesla mobile technicians make house calls, and service can even occasionally be delivered remotely — without ever physically touching the car.

Tesla has created its own network of “supercharger stations” where drivers can charge their Tesla vehicles in about 30 minutes using a proprietary network. The highly anticipated “Full Self-Driving” suite will be another way of allowing longer and safer road trips.

Future additions to the Tesla catalog include the Cybertruck, an all-electric pickup truck with angular proportions and stainless steel exoskeleton, and a Semi, which will invigorate long-haul trucking with more benefits for drivers and transit companies.

The Tesla Gigafactory Flywheel Phenomenon

Tesla’s has 4 “gigafactories” (‘giga’ stems from gigawatt-hour, or GWh, here):

  1. Giga Nevada — in Sparks, near Reno, Nevada;
  2. the Solar City Gigafactory at Buffalo, New York (Giga Buffalo? Gigafactory 2?);
  3. Giga Shanghai — the 2019 Tesla plant in Shanghai, China; and,
  4. Giga Berlin — the new European Tesla gigafactory, which is being constructed in Grünheide, near Berlin, Germany.

Three main gigafactory features are part of the Tesla flywheel phenomenon.

  • Separate from their scale, Tesla’s organization of production reverses much current conventional wisdom regarding production geography. For example, Tesla’s automotive facility in Fremont, California, reconcentrates manufacturing onsite as in-house brand componentry, especially heavy parts, or by requiring distant global suppliers to relocate in proximity to the main manufacturing plant.
  • As an electric vehicle producer, Tesla’s production and logistics infrastructures are important in meeting greenhouse gas mitigation and the reduction of global warming.
  • Tesla’s deployment of Big Data analytics, artificial intelligence (AI), and predictive management are important. Gigafactory logistics contribute to production and distribution efficiency. Company effectiveness is a primer for all future industry and services as they seek to minimize time-management issues. Methods of reduction of wasteful energy usage become evident through dataset analysis.

Tesla’s global reach is extending to Europe and Asia. Tesla Motors India and Energy Private Limited was incorporated on January 8, 2021. Registered in Bangalore — the country’s technology hub — the company would start with sales and then potentially move on to assembly and manufacturing, Nitin Gadkari, India’s transport minister, said. Also see:

The Long Reach of Tesla’s Flywheel

Tesla solar customers from now on will buy power systems that feed exclusively to Powerwalls. Powerwalls will interface only between the customer’s utility meter and house main breaker panel, enabling a relatively simple install and seamless whole house backup during utility dropouts, according to Musk.

Updates reflect customer feedback — many people thought their battery-less solar system would work in a blackout, only to be disappointed when it didn’t. Moreover, Tesla consumers seemed eager to gain protection against blackouts, so streamlining the offerings into paired technologies made sense — and deepened the Tesla flywheel effect.

CleanTechnica’s Zachary Shahan has outlined the extensive list of internal “Tesla companies” and their immediate competitors. If there was any doubt about Tesla’s flywheel effect, look no farther than these intersections of products and consumer loyalty to understand Tesla’s ongoing and seemingly impossible accomplishments.

  • Tesla Cars vs. BMW & Audi & Toyota & Honda — car manufacturing
  • Tesla Network vs. Lyft & Uber — mobility services
  • Tesla Supercharging vs. Electrify America & EVgo & Ionity & Fastned — fast charging
  • Tesla Charging vs. ChargePoint & EVBox & many others — home/destination chargers
  • Tesla Autopilot vs. Mobileye/Intel & Waymo & Cruise/GM & Nvidia — self-driving/driver-assist tech
  • Tesla Solar vs. Sunrun & Vivint Solar — solar panel installation
  • Tesla Solar Tech vs. SunPower & Trina Solar — rooftop solar generation tech
  • Tesla Energy Storage vs. AES & SimpliPhi & sonnen — stationary energy storage
  • Tesla Grid Services vs. Utilities around the world & Stem — grid services
  • Tesla Insurance vs. Allstate & Geico & State Farm — insurance
  • Tesla Stores vs. Auto dealerships — auto sales & service
  • Tesla Trucks vs. Freightliner/Daimler & MAN Truck and Bus & Scania & Iveco — semi trucks
  • Tesla Infotainment vs. Apple & Google — in-car infotainment
  • Tesla Computers vs. Nvidia & Intel — computer chips, systems on a chip, supercomputers
  • Tesla Batteries vs. LG Chem & CATL & Panasonic — battery cells
  • Tesla Seats vs. Faurecia & Johnson Controls & Lear Corporation & TS Tech & Toyota Boshoku — automotive seats
  • Tesla Robots vs. Kuka & ABB & Yaskawa Electric Corporation — industrial robots for manufacturing
flywheel

Tesla offices in Fremont, California. Photo by Zachary Shahan, CleanTechnica.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Chevy Brightdrop finally gets a lease deal worth writing about

Published

on

By

Chevy Brightdrop finally gets a lease deal worth writing about

GM may have decided to pull the plug on the forward-looking Chevy Brightdrop electric van a few months ago, but don’t let that stop you, but don’t let that fool you. Right now might be the best time ever to get your hands on one.

SKIP THE STORY: jump right to the deals (trusted affiliate link).

It’s hard to overstate how good the deals on Chevy’s Brightdrop got while GM was still trying to build up demand for its fleet-focused van, and now that the company has decided to stop production, the deals have gotten even better, with a newly announced $699 lease for 39 mo. with $2,999 down through January 2nd — and that’s before you factor in an additional $3,000 discount reserved for Costco Executive Members!

Despite that, I’ve heard more than one fleet manager express hesitation at the thought of adding a discontinued product to their fleet, even if it is a killer discount. To them, I offer the following, model-agnostic rebuttal:

Advertisement – scroll for more content

Legacy brands support their products


GM-Envolve-electric
Fleet of FedEx BrightDrop 600 electric vans; via GM.

Companies like GM aren’t going anywhere soon, and neither are the customers they’ve spent millions of dollars acquiring over the past several decades. They’ll keep building parts and offering service and maintenance on vehicles like the Brightdrop for at least a decade — not least of which because they have to!

GM sells each Brightdrop with a minimum 8 year/100,000 mile warranty on the battery and other key components, which can be extended either through GM itself or through reputable third-party companies like Xcelerate Auto for seven more.

There are precious few large fleets out there looking at 15 year, 200-plus thousand mile vehicle replacement cycles. For those that are, however, all indications so far are that the vehicle’s battery health and general performance will still be well within usable limits.

So, yes: parts longevity and manufacturer support will be there (something I’d be less confident about with a startup like Rivian or Bollinger, for example), but there’s more.

Section 179 and local incentives


National construction company deploys its 100th Chevrolet Silverado EV
McKinstry’s 100th Silverado EV; via GM.

The One Big, Beautiful Bill Act (OBBBA) of 2025 gutted America’s energy independence goals and ensuring its auto industry would fall even further behind the Chinese in the EV race, but the loss of Section 45W wasn’t the only change written into the IRS’ rulebook. Section 179, an immediate expense reduction that business owners can take on depreciable equipment assets, has been made significantly more powerful for 2025.

The section 179 expense deduction is limited to such items as cars, office equipment, business machinery, and computers. This speedy deduction can provide substantial tax relief for business owners who are purchasing startup equipment.

INVESTOPEDIA

The revised Section 179 tax credit (or, more accurately, expense reduction) allows for a 100% deduction for equipment purchases has doubled to $2.5 million, with a phase-out kicking in at $4 million of capital investments that drops to zero at $6.5 million. That credit and can be applied to new and used vehicles, as well as charging infrastructure, battery energy storage systems, specialized tools, and more (as long as they’re new to you).

What’s more, with regional incentives like the up to $15,000 off a new medium-duty van available from Illinois utility ComEd, the net cost of GM’s $699 promo lease drops to ~$315/mo., and there is still state money out there, as well, depending on where you live.

All of which is to say: don’t let a little thing like GM discontinuing the Brightdrop convince you to skip it. If you do that, the bean counters that killed off the Buick Grand National, GMC Syclone, and Pontiac Fiero win.

SOURCE | IMAGES: GM Envolve.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

EIA: Solar + storage soar as fossil fuels stall through September 2025

Published

on

By

EIA: Solar + storage soar as fossil fuels stall through September 2025

US Energy Information Administration (EIA) data released on November 25 and reviewed by the SUN DAY Campaign reveal that, during the first nine months of 2025 and for the past year, solar and battery storage have dominated growth among competing energy sources, while fossil fuels and nuclear power have stagnated.

Solar set new records in September

EIA’s latest “Electric Power Monthly” report (with data through September 30, 2025), once again confirms that solar is the fastest-growing source of electricity in the US.

In September alone, electrical generation by utility-scale solar (>1 megawatt (MW)) ballooned by well over 36.1% compared to September 2024, while “estimated” small-scale (e.g., rooftop) solar PV increased by 12.7%. Combined, they grew by 29.9% and provided 9.7% of US electrical output during the month, up from 7.6% a year ago.

Moreover, generation from utility-scale solar thermal and photovoltaic systems expanded by 35.8%, while that from small-scale systems rose by 11.2% during the first nine months of 2025 compared to the same period in 2024. The combination of utility-scale and small-scale solar increased by 29.0% and produced a bit over 9.0% (utility-scale: 6.85%; small-scale: 2.16%) of total US electrical generation for January-September, up from 7.2% a year earlier.

Advertisement – scroll for more content

And for the third consecutive month, utility-scale solar generated more electricity than US wind farms: by 4% in July, 15% in August, and 9% in September. Including small-scale systems, solar has outproduced wind for five consecutive months and by over 40% in September.

Wind leads among renewables

Wind turbines across the US produced 9.8% of US electricity in the first nine months of 2025 – an increase of 1.3% compared to the same period a year earlier and 79% more than that produced by US hydropower plants.

During the first nine months of 2025, electrical generation from wind plus utility-scale and small-scale solar provided 18.8% of the US total, up from 17.1% during the first three quarters of 2024.

Wind and solar combined provided 15.1% more electricity than did coal during the first nine months of this year, and 9.8% more than the US’s nuclear power plants. In fact, as solar and wind expanded, nuclear-generated electricity dropped by 0.1%.

Renewables are now only second to natural gas

The mix of all renewables (wind, solar, hydropower, biomass, and geothermal) produced 8.7% more electricity in January-September than they did a year ago, providing 25.6% of total US electricity production compared to 24.2% 12 months earlier.

Renewables’ share of electrical generation is now second to only that of natural gas, which saw a 3.8% drop in electrical output during the first nine months of 2025.  

Solar + storage have dominated 2025

Between October 1, 2024, and September 30, 2025, utility-scale solar capacity grew by 31,619.5 MW, while an additional 5,923.5 MW was provided by small-scale solar. EIA foresees continued strong solar growth, with an additional 35,210.9 MW of utility–scale solar capacity being added in the next 12 months.

Strong growth was also experienced by battery storage, which grew by 59.4% during the past year, adding 13,808.9 MW of new capacity. EIA also notes that planned battery capacity additions over the next year total 22,052.9 MW.

Wind also made a strong showing during the past 12 months, adding 4,843.2 MW, while planned capacity additions over the next year total 9,630.0 MW (onshore) plus 800.0 MW (offshore).

On the other hand, natural gas capacity increased by only 3,417.1 MW and nuclear power added 46.0 MW. Meanwhile, coal capacity plummeted by 3,926.1 MW and petroleum-based capacity fell by an additional 606.6 MW.

Thus, during the past year, renewable energy capacity, including battery storage, small-scale solar, hydropower, geothermal, and biomass, ballooned by 56,019.7 MW while that of all fossil fuels and nuclear power combined actually declined by 1,095.2 MW.

The EIA expects this trend to continue and accelerate over the next 12 months. Utility-scale renewables plus battery storage are projected to increase by 67,806.1 MW (a forecast for small-scale solar is not provided). Meanwhile, natural gas capacity is expected to increase by only 3,835.8 MW, while coal capacity is projected to decrease by 5,857.0 MW, and oil capacity is anticipated to decrease by 5.8 MW. EIA does not project any new growth for nuclear power in the coming year.

SUN DAY Campaign’s executive director Ken Bossong said:

The Trump Administration’s efforts to jump-start nuclear power and fossil fuels are not succeeding. Capacity additions from solar, wind, and battery storage continue to dramatically outpace those from gas, coal, and nuclear, and by growing margins.

Read more: EIA: Solar + storage dominate, fossil fuels stagnate to August 2025


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Toyota’s $15,000 electric SUV is a hit in China

Published

on

By

Toyota's ,000 electric SUV is a hit in China

The bZ3X is off to a strong start as Toyota’s most affordable electric SUV, starting at around $15,000 in China.

The bZ3X is a $15,000 Toyota electric SUV in China

Toyota’s joint venture, GAC Toyota, launched the bZ3X in China this March, an affordable, compact electric SUV aimed at young families.

The bZ3X is Toyota’s “first 100,000 yuan-level pure electric SUV,” starting at just 109,800 yuan, or roughly $15,000.

By May, the electric SUV was the best-selling foreign-owned EV in China, beating out the Volkswagen ID.3, Nissan N7, BMW i3, and Volkswagen ID.4 CROZZ.

Advertisement – scroll for more content

According to the latest update, the bZ3X remains a hot seller. GAC Toyota announced that bZ3X sales exceeded 10,000 units for two consecutive months, with 10,010 units sold in November. Cumulative deliveries have now surpassed 62,000 units.

GAC Toyota recently put the electric SUV through rigorous testing on a winter road trip across China, “showcasing its impressive capabilities as a 100,000-yuan-class pure electric vehicle.”

Measuring 4,645 mm in length, 1,885 mm in width, and 1,625 mm in height, the bZ3X is about the same size as BYD’s popular Yuan Plus (sold as the Atto 3 overseas).

Inside, the electric SUV is a major upgrade over the Toyota vehicles we’re accustomed to, with advanced ADAS features, smart storage, and large digital screens.

The bZ3X is available in seven different trims in China, two of which include a LiDAR. Upgrading to the LiDAR version costs 149,800 yuan ($20,500).

Toyota’s electric SUV is available with 50.04 kWh and 67.92 kWh battery pack options, providing a CLTC range of 430 km (267 miles) and 610 km (379 miles), respectively.

Less than two weeks ago, GAC Toyota launched pre-sales for the bZ7, a new flagship electric sedan. According to Toyota, the new flagship EV “possesses a higher level of intelligence than any of Toyota’s offerings in global markets,” as the automaker fights to regain market share in China’s fierce auto market.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending