Connect with us

Published

on

In physics, a flywheel is a rotating disk that stores kinetic energy in its momentum and then spins that energy out to a nearby engine. In the context of business, as the flywheel rotates, it increases output or revenue without increasing input or cost.

Tesla, best known for being an all-electric car company, is, well, much more than just a car company. It has disrupted a legacy industry with a new business model and consumer approach. But Tesla didn’t stop there. It expanded to new industries, grabbed a stake in key infrastructure sectors, worked to decentralize power distribution, and now offers a new alternative to today’s utility industry. Tesla’s end products are state-of-the-technological-art — all of which interconnect in a flywheel that incites consumer allegiance across multiple sectors and keeps those consumers coming back to Tesla for more — in a flywheel effect, essentially.

Tesla’s mission statement is: “to accelerate the advent of sustainable transport by bringing compelling mass-market electric cars to market as soon as possible.” Today, Tesla builds not only all-electric vehicles, but also scalable clean energy generation and storage products, all part of a business model that prods the world to stop relying on fossil fuels and move towards a zero-emission future.

The intersecting notions of a flywheel in this article were inspired by Post Corona — From Crisis to Opportunity, by Scott Galloway (2020). The book draws upon the metaphor to suggest that, when today’s consumers are introduced to one product within a brand, they are more likely to purchase other products within that same brand. Companies today, Galloway explains, should be focusing on the reciprocal nature of consumerism so that the lure of one product leads consumers to other, different products made by the same company.

In the book, the author, an NYU Stern School of Business professor, unpacks how “tech” used to be a “narrowly defined industry consisting of companies that made computer hardware and software, which companies in ‘other’ industries bought for their business.” No longer is tech so specifically grounded. As an example, Galloway explains that combined tech/auto company Tesla appeals “through every aspect of its strategy: pricing, production, marketing, and even its leadership.”

In a February regulatory filing, Tesla acknowledged CEO Elon Musk’s numerous commitments. “Although Mr. Musk spends significant time with Tesla and is highly active in our management, he does not devote his full time and attention to Tesla,” the filing indicated. It described Musk’s leadership in SpaceX and “other emerging technology ventures.” Musk’s influence extends beyond Tesla to a company that merges the human brain with computers, Neuralink, along with a tunnel-building firm, The Boring Company.

In essence, the Tesla flywheel concept suggests that a person who purchases a Tesla Model 3 is more likely to add range at a Tesla Supercharger and eat at a Tesla restaurant. Later, when growing into other renewable energy options, that same consumer is more likely to choose Tesla Solar and Powerwalls over a competitor’s offerings. And who knows what else?

The Tesla flywheel concept makes the company very appealing to some investors. In fact, Canaccord Genuity estimates that Tesla will reach $8 billion in revenue by 2025.

Tesla Energy Storage alongside Use

The Tesla company website acknowledges that “electric cars, batteries, and renewable energy generation and storage already exist independently, but when combined, they become even more powerful.” That confluence is the essence of the Tesla flywheel.

EVs and other renewable energy sources rely on batteries, and Tesla has refused to relinquish its full autonomy as it grows into different products and sectors. As elsewhere, Tesla is planning for its own battery production in China and has been advertising for technicians for its Shanghai facility in recent months, part of better per unit profitability in the region.

The Tesla Energy division provides stationary storage batteries for residential (Powerwall), commercial (Powerpack), and utility-scale (Megapack) applications. Musk has noted on several occasions that Tesla Energy could someday become bigger than Tesla’s automobile business.

Storage is not just about enabling renewable energy — it’s also an important tool for ensuring the reliability of the grid, smoothing out peaks in demand for power, and preventing sudden surges that can overload local distribution systems.

Tesla’s Core Electric Vehicle Catalog

New regulations on safety and vehicle emissions, technological advances, and shifting customer expectations are bringing electric vehicles (EVs) into the consumer transportation mainstream. The Tesla flywheel is evident within its EV business model, which is based on 3 levels of consumer service: selling, servicing, and charging its electric vehicles, which maintains control over sales and service.

The Washington Post says that Musk’s “impulsive leadership” has vaulted Tesla from its initial entry “as an upstart electric vehicle pioneer to the world’s most valuable automaker.” Fortune named him its 2020 Businessperson of the Year.

An international network of Tesla-owned showrooms and galleries, mostly in urban centers, is based on direct sales and service, not franchised dealerships. The showrooms are complemented by internet sales as well as Service Plus centers. In some areas, Tesla mobile technicians make house calls, and service can even occasionally be delivered remotely — without ever physically touching the car.

Tesla has created its own network of “supercharger stations” where drivers can charge their Tesla vehicles in about 30 minutes using a proprietary network. The highly anticipated “Full Self-Driving” suite will be another way of allowing longer and safer road trips.

Future additions to the Tesla catalog include the Cybertruck, an all-electric pickup truck with angular proportions and stainless steel exoskeleton, and a Semi, which will invigorate long-haul trucking with more benefits for drivers and transit companies.

The Tesla Gigafactory Flywheel Phenomenon

Tesla’s has 4 “gigafactories” (‘giga’ stems from gigawatt-hour, or GWh, here):

  1. Giga Nevada — in Sparks, near Reno, Nevada;
  2. the Solar City Gigafactory at Buffalo, New York (Giga Buffalo? Gigafactory 2?);
  3. Giga Shanghai — the 2019 Tesla plant in Shanghai, China; and,
  4. Giga Berlin — the new European Tesla gigafactory, which is being constructed in Grünheide, near Berlin, Germany.

Three main gigafactory features are part of the Tesla flywheel phenomenon.

  • Separate from their scale, Tesla’s organization of production reverses much current conventional wisdom regarding production geography. For example, Tesla’s automotive facility in Fremont, California, reconcentrates manufacturing onsite as in-house brand componentry, especially heavy parts, or by requiring distant global suppliers to relocate in proximity to the main manufacturing plant.
  • As an electric vehicle producer, Tesla’s production and logistics infrastructures are important in meeting greenhouse gas mitigation and the reduction of global warming.
  • Tesla’s deployment of Big Data analytics, artificial intelligence (AI), and predictive management are important. Gigafactory logistics contribute to production and distribution efficiency. Company effectiveness is a primer for all future industry and services as they seek to minimize time-management issues. Methods of reduction of wasteful energy usage become evident through dataset analysis.

Tesla’s global reach is extending to Europe and Asia. Tesla Motors India and Energy Private Limited was incorporated on January 8, 2021. Registered in Bangalore — the country’s technology hub — the company would start with sales and then potentially move on to assembly and manufacturing, Nitin Gadkari, India’s transport minister, said. Also see:

The Long Reach of Tesla’s Flywheel

Tesla solar customers from now on will buy power systems that feed exclusively to Powerwalls. Powerwalls will interface only between the customer’s utility meter and house main breaker panel, enabling a relatively simple install and seamless whole house backup during utility dropouts, according to Musk.

Updates reflect customer feedback — many people thought their battery-less solar system would work in a blackout, only to be disappointed when it didn’t. Moreover, Tesla consumers seemed eager to gain protection against blackouts, so streamlining the offerings into paired technologies made sense — and deepened the Tesla flywheel effect.

CleanTechnica’s Zachary Shahan has outlined the extensive list of internal “Tesla companies” and their immediate competitors. If there was any doubt about Tesla’s flywheel effect, look no farther than these intersections of products and consumer loyalty to understand Tesla’s ongoing and seemingly impossible accomplishments.

  • Tesla Cars vs. BMW & Audi & Toyota & Honda — car manufacturing
  • Tesla Network vs. Lyft & Uber — mobility services
  • Tesla Supercharging vs. Electrify America & EVgo & Ionity & Fastned — fast charging
  • Tesla Charging vs. ChargePoint & EVBox & many others — home/destination chargers
  • Tesla Autopilot vs. Mobileye/Intel & Waymo & Cruise/GM & Nvidia — self-driving/driver-assist tech
  • Tesla Solar vs. Sunrun & Vivint Solar — solar panel installation
  • Tesla Solar Tech vs. SunPower & Trina Solar — rooftop solar generation tech
  • Tesla Energy Storage vs. AES & SimpliPhi & sonnen — stationary energy storage
  • Tesla Grid Services vs. Utilities around the world & Stem — grid services
  • Tesla Insurance vs. Allstate & Geico & State Farm — insurance
  • Tesla Stores vs. Auto dealerships — auto sales & service
  • Tesla Trucks vs. Freightliner/Daimler & MAN Truck and Bus & Scania & Iveco — semi trucks
  • Tesla Infotainment vs. Apple & Google — in-car infotainment
  • Tesla Computers vs. Nvidia & Intel — computer chips, systems on a chip, supercomputers
  • Tesla Batteries vs. LG Chem & CATL & Panasonic — battery cells
  • Tesla Seats vs. Faurecia & Johnson Controls & Lear Corporation & TS Tech & Toyota Boshoku — automotive seats
  • Tesla Robots vs. Kuka & ABB & Yaskawa Electric Corporation — industrial robots for manufacturing
flywheel

Tesla offices in Fremont, California. Photo by Zachary Shahan, CleanTechnica.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

ChargePoint brings 40+ new fast-charging ports to metro Detroit

Published

on

By

ChargePoint brings 40+ new fast-charging ports to metro Detroit

Metro Detroit is about to get a big boost of fast EV chargers, with more than 40 new ChargePoint ports set to come online across multiple sites owned by the Dabaja Brothers Development Group.

The first ultra-fast charging site just opened in Canton, Michigan. It’s owned and operated by Dabaja Brothers, who plan to follow it with additional ChargePoint-equipped locations in Dearborn and Livonia.

“We started this project because we saw a gap in our community – there was almost nowhere to charge an EV in Canton, and a similar lack of charging across metro Detroit,” said Yousef Dabaja, owner/operator at Dabaja Brothers.

Each metro Detroit site will feature ChargePoint Express Plus fast charging stations, which can deliver up to 500 kW to a single port, can fast-charge two vehicles at the same time, and are compatible with all EVs. The stations feature a proprietary cooling system to deliver peak charging speeds for sustained periods, ensuring that charging speed remains consistent.

Advertisement – scroll for more content

The stations operate on the new ChargePoint Platform, which enables operators to monitor performance, adjust pricing, troubleshoot issues, and gain real-time insights to keep chargers running smoothly.

Rick Wilmer, CEO at ChargePoint, said, “This initiative will rapidly infill the ‘fast charging deserts’ across the Detroit area, allowing drivers to quickly recharge their vehicles when and where they need to.”

Read more: ChargePoint just gave its EV charging software a major AI upgrade


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Mercedes-Benz opens its first DC fast charging hub at Starbucks

Published

on

By

Mercedes-Benz opens its first DC fast charging hub at Starbucks

Mercedes-Benz High-Power Charging and Starbucks have officially opened their first DC fast charging hub together, off the I-5 in Red Bluff, California.

The 400 kW Mercedes-Benz chargers are capable of adding up to 300 miles in 10 minutes, depending on the EV, and every stall has both NACS and CCS cables – they’re fully open DC fast chargers.

Mercedes-Benz HPC North America, a joint venture between subsidiaries of Mercedes-Benz Group and renewable energy producer MN8 Energy, first announced in July 2024 that it would install DC fast chargers at Starbucks stores along Interstate 5, the main 1,400-mile north-south interstate highway on the US West Coast from Canada to Mexico. Ultimately, Mercedes plans to install fast chargers at 100 Starbucks stores across the US.

Mercedes-Benz HPC opened its first North American charging site at Mercedes-Benz USA’s headquarters in Sandy Springs, Georgia, in November 2023 as part of an initial $1 billion charging network investment. As of the end of 2024, Mercedes had deployed over 150 operational fast chargers in the US, but it hasn’t disclosed an official number of how many chargers are currently online.

Advertisement – scroll for more content

Andrew Cornelia, CEO of Mercedes-Benz HPC North America, is leaving the company at the end of the month to become global head of electrification & sustainability at Uber.

Read more: Mercedes-Benz is deploying 400 kW US-made EV fast chargers with CCS and NACS cables


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla AI4 vs. NVIDIA Thor: the brutal reality of self-driving computers

Published

on

By

Tesla AI4 vs. NVIDIA Thor: the brutal reality of self-driving computers

The race for autonomous driving has three fronts: software, hardware, and regulatory. For years, we’ve watched Tesla try to brute-force its way to “Full Self-Driving (FSD)” with its own custom hardware, while the rest of the automotive industry is increasingly lining up behind NVIDIA.

Now that we know Tesla’s new AI5 chip is delayed and won’t be in vehicles until 2027, it’s worth comparing the two most dominant “self-driving” chips today: Tesla’s latest Hardware 4 (AI4) and NVIDIA’s Drive Thor.

Here’s a table comparing the two chips with the best possible specs I could find. greentheonly’s teardown was particularly useful. If you find things you think are not accurate, please don’t hesitate to reach out:

Feature / Specification Tesla AI4 (Hardware 4.0) NVIDIA Drive Thor (AGX / Jetson)
Developer / Architect Tesla (in-house) NVIDIA
Manufacturing Process Samsung 7nm (7LPP class) TSMC 4N (custom 5nm class)
Release Status In production (shipping since 2023) In production since 2025
CPU Architecture ARM Cortex-A72 (legacy) ARM Neoverse V3AE (server-grade)
CPU Core Count 20 cores (5× clusters of 4 cores) 14 cores (Jetson T5000 configuration)
AI Performance (INT8) ~100–150 TOPS (dual-SoC system) 1,000 TOPS (per chip)
AI Performance (FP4) Not supported / not disclosed 2,000 TFLOPS (per chip)
Neural Processing Unit 3× custom NPU cores per SoC Blackwell Tensor Cores + Transformer Engine
Memory Type GDDR6 LPDDR5X
Memory Bus Width 256-bit 256-bit
Memory Bandwidth ~384 GB/s ~273 GB/s
Memory Capacity ~16 GB typical system Up to 128 GB (Jetson Thor)
Power Consumption Est. 80–100 W (system) 40 W – 130 W (configurable)
Camera Support 5 MP proprietary Tesla cameras Scalable, supports 8MP+ and GMSL3
Special Features Dual-SoC redundancy on one board Native Transformer Engine, NVLink-C2C

The most striking difference right off the bat is the manufacturing process. NVIDIA is throwing everything at Drive Thor, using TSMC’s cutting-edge 4N process (a custom 5nm-class node). This allows them to pack in the new Blackwell architecture, which is essentially the same tech powering the world’s most advanced AI data centers.  

Advertisement – scroll for more content

Tesla, on the other hand, pulled a move that might surprise spec-sheet warriors. Teardowns confirm that AI4 is built on Samsung’s 7nm process. This is mature, reliable, and much cheaper than TSMC’s bleeding-edge nodes.

When you look at the compute power, NVIDIA claims a staggering 2,000 TFLOPS for Thor. But there’s a catch. That number uses FP4 (4-bit floating point) precision, a new format designed specifically for the Transformer models used in generative AI.  

Tesla’s AI4 is estimated to hit around 100-150 TOPS (INT8) across its dual-SoC redundant system. On paper, it looks like a slaughter, but Tesla made a very specific engineering trade-off that tells us exactly what was bottling up their software: memory bandwidth.

Tesla switched from LPDDR4 in HW3 to GDDR6 in HW4, the same power-hungry memory you find in gaming graphics cards (GPUs). This gives AI4 a massive memory bandwidth of approximately 384 GB/s, compared to Thor’s 273 GB/s (on the single-chip Jetson config) using LPDDR5X.  

This suggests Tesla’s vision-only approach, which ingests massive amounts of raw video from high-res cameras, was starving for data.

Based on Elon Musk’s comments that Tesla’s AI5 chip will have 5x the memory bandwidth, it sounds like it might still be Tesla’s bottleneck.

Here is where Tesla’s cost-cutting really shows. AI4 is still running on ARM Cortex-A72 cores, an architecture that is nearly a decade old. They bumped the core count to 20, but it’s still old tech.  

NVIDIA Thor, meanwhile, uses the ARM Neoverse V3AE, a server-grade CPU explicitly designed for the modern software-defined vehicle. This allows Thor to run not just the autonomous driving stack, but the entire infotainment system, dashboard, and potentially even an in-car AI assistant, all on one chip.

Thor has found many takers, especially among Tesla EV competitors such as BYD, Zeekr, Lucid, Xiaomi, and many more.

Electrek’s Take

There’s one thing that is not in there: price. I would assume that Tesla wins on that front, and that’s a big part of the project. Tesla developed a chip that didn’t exist, and that it needed.

It was an impressive feat, but it doesn’t make Tesla an incredible leader in silicon for self-driving.

Tesla is maxing out AI4. It now uses both chips, making it less likely to achieve the redundancy levels you need to deliver level 4-5 autonomy.

Meanwhile, we don’t have a solution for HW3 yet and AI5 is apparently not coming to save the day until 2027.

By then, there will likely be millions of vehicles on the road with NVIDIA Thor processors.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending