Connect with us

Published

on

Green hydrogen fans have lots to cheer about these days as one huge mega-project after another takes shape, but there is also some interesting activity bubbling up on the small end of the scale. With that in mind, let’s check out a new modular, off-grid, above-ground, rainwater harvesting, solar powered hydrogen fuel station over in Australia. Wait, doesn’t the US have one of those, too?

Keeping It Above Ground

Above ground is the keyword here. Electric cars get props for having nothing coming out of their tailpipes, and they also have this extra benefit of not contributing to the LUST problem, which for some reason nobody talks about. However, people should be talking about it, because LUST is a big problem — for gasmobiles, that is.

That’s LUST, as in Leaking Underground Storage Tanks. When you pull into your local gas station, all of your gas does not come out of that little thing sticking up out of the ground. It comes from a storage tank below the surface. Not all of them leak, of course. However, there are a lot of them, and some of them leak into the ground, potentially impacting people who depend on underground aquifers for drinking, which EPA estimates includes about half the US population.

Here in the US, in 1984 Congress finally passed a law requiring corrective action for old leaking underground tanks for petroleum and other hazardous liquids, setting standards for new ones, and tasking EPA with creating a program to deal with the whole mess. Since then the law has been strengthened and expanded, but the problem persists.

Though EPA calculates that 37 states closed about 90% of their problem sites over the past 20 years, 544,000 underground storage tanks remain. They require constant monitoring, correction, and removal if necessary, and a quick stroll through the Intertubes reveals plenty of holes in the program.

“Addressing the LUST sites remaining to be cleaned up continues to be a high priority for EPA and our state, territorial, and tribal partners,” EPA recently wrote, by way of introducing the idea that a backlog of cases remains, even as new ones pop up.

Above-Ground Modular Green Hydrogen Refueling Station To The Rescue

One obvious solution to the LUST problem is to store your hazardous liquids above ground, where you can keep an eye on them. Another part of the solution is to store only the minimum necessary to fulfill near-term needs, and that’s where green hydrogen comes in.

For those of you new to the hydrogen topic, most of the world’s supply of hydrogen is produced by pulling it out of natural gas, which is why hydrogen fuel cell cars get the stink-eye from advocates for climate action. They have zero tailpipe emissions, but they drag a long tail of fossil energy baggage behind them.

Green hydrogen from renewable resources could solve that problem. It used to be a pie in the sky idea, until recent years when the cost of wind and solar power began to sink like a stone. That set the stage for electrolysis, which refers to systems that apply an electrical current to water, and out bubbles the green hydrogen.

That opens the door for hydrogen fuel stations that can store green hydrogen in above-ground tanks. Add a water storage tank and perhaps throw in a battery for additional energy storage, and everything you need is out in the open air.

That finally brings us to the latest news about green hydrogen fuel stations. The firm Hydrogen Fuels Australia has just dropped word that plans for a new hydrogen fuel station are under way for the Melbourne suburb of Truganina, which will give it bragging rights to the first ever off-grid modular green hydrogen production and fuel station in all of Australia.

“Founded on environmentally sustainable and ‘low impact’ concepts, H2FA’s operation uses its own electrolysis assets (in island mode) to convert renewable power into green hydrogen,” explains the company, emphasizing that this is a modular, off-grid system and not a grid-connected system.

The sustainable element includes rainwater harvesting to supply the electrolysis system.

The Global Green Hydrogen Technology Network Is Growing

H2FA also emphasizes that the site is not a one-off. It will serve as an R&D center to fine tune the technology and scale up the green hydrogen production end of things.

The project also demonstrates how the international knowledge base and supply chain is pivoting into green hydrogen.

Partners in the project include Australia-based Skai Energies along with Nilsson Energy of Sweden to manage the site’s microgrid, with Green Hydrogen Systems of Denmark providing the electrolyzers, and the US firm Plug Power supplying power to the site.

If you’re not surprised to see Plug Power in the green hydrogen mix, join the club. CleanTechnica first took note of Plug Power back in 2010, when it was pitching hydrogen fuel cell forklifts to the masses. That was before the green hydrogen industry began to emerge. Now that it has, Plug Power is still eyeballing all sorts of hydrogen-fueled mobility devices, but apparently it has also come to realize that green hydrogen production is a money maker.

A 750-kilowatt solar array will power the electrolysis system at the Truganina site. The initial plans call for 60-90 kilograms of green hydrogen daily, eventually ramping up to 3,000 kilograms. H2FA calculates that will provide enough to fuel over 100 vehicles daily.

More Modular, Renewable Hydrogen Fuel Stations For The US

If all goes according to plan, the new H2FA fuel station will be up and running next year. The company is already planning to expand the concept across Victoria and the rest of Australia, too.

So, what about the US? Although hydrogen fuel cell passenger cars have struggled to find a foothold in the market, a growing number of auto makers are eyeballing the long haul truck field and other heavy duty uses. Quick refueling, long range, and high power are the basic benefits.

The US Department of Energy, for one, is a huge fan. Earlier this month Energy Secretary Jennifer Granholm announced that hydrogen will be the first area of focus under the Energy Department’s new Earthshots innovation initiative, modeled on the successful Moonshot and Sunshot programs.

The Earthshots initiative follows on the heels of a growing movement among hydrogen stakeholders in the US to pump up interest in green hydrogen as a decarbonization pathway, and not just for mobility purposes. In one especially noteworthy development that should send shivers up the spines of natural gas stakeholders, the powerhouse legacy firm Mitsubishi has come up with a new gas turbine for power plants that is specifically designed to integrate green hydrogen with natural gas on an incremental basis, until sufficient supplies are available for 100% green hydrogen operations.

Yikes! Hopefully those green hydrogen power stations will do a better job under climate impacts than natural gas power plants. Natural gas was supposed to be a cleaner “bridge” fuel to deep decarbonization, but for one thing its cleanliness is in question, and for another thing it doesn’t seem up to the task of providing power on a reliable basis during hot spells as well as cold ones.

Looking at you, Texas. In an interesting twist, earlier this year Texas launched a project to explore the development of a regional hydrogen hub, leveraging its considerable wind and solar resources, so perhaps help is on the way.

Follow me on Twitter @TinaMCasey.

Image (screenshot): Courtesy of Hydrogen Fuels Australia.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Wheel-E Podcast: Lectric XP4, new RadRunners, Tariff troubles, more

Published

on

By

Wheel-E Podcast: Lectric XP4, new RadRunners, Tariff troubles, more

This week on Electrek’s Wheel-E podcast, we discuss the most popular news stories from the world of electric bikes and other nontraditional electric vehicles. This time, that includes the launch of the Lectric XP4 e-bike, a new set of RadRunners from Rad Power Bikes, California’s e-bike voucher program hits more hurdles, the effect of Trump tariffs on several e-bike and e-moto companies, and more.

The Wheel-E podcast returns every two weeks on Electrek’s YouTube channel, Facebook, Linkedin, and Twitter.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

After the show ends, the video will be archived on YouTube and the audio on all your favorite podcast apps:

Advertisement – scroll for more content

Apple Podcasts

Spotify

Overcast

Pocket Casts

Castro

RSS

We also have a Patreon if you want to help us to avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the Wheel-E podcast today:

Here’s the live stream for today’s episode starting at 8:00 a.m. ET (or the video after 9:00 a.m. ET):

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

AUSA adds new, rough terrain electric forklift to its line of construction EVs

Published

on

By

AUSA adds new, rough terrain electric forklift to its line of construction EVs

Last month’s bauma event in Germany was so big that the industry hive mind is still trying to digest everything it saw – and that includes these new, rough terrain electric material handlers from Spanish equipment brand AUSA!

AUSA calls itself, “the global manufacturer of compact all-terrain machines for the transportation and handling of material,” and backs that claim up by delivering more than 12,000 units to customers each year. Now, the company hopes to add to that number with the launch of the C151E rough-terrain electric forklift, which takes its rightful place alongside AUSA’s electric telehandler and 101/151 lines of mini dumpers.

The C151 features a 15.5 kWh li-ion battery pack good for “one intense shift” worth of work, sending electrons to a 19.5 kW (approx. 25 hp) electric motor and the associated forks, tilt cylinders, etc. Charging is through a “standard” CCS L1/2 AC port, which can recharge the big electric forklift to 80% in about 2.5 hours.

Looked at another way: even if you drive the battery to nearly nothing, the AUSA can be charged up during a lunch break or shift change and ready to work again as soon as you reach for it.

Advertisement – scroll for more content

AUSA electric forklift charging

The 6,040 lb. (empty) AUSA C151E has a 3,000-pound maximum load capacity and a maximum lift height just over 13 feet.

“It is an ideal tool for working in emission-free spaces such as greenhouses, municipal night works, enclosed spaces, etc.,” reads AUSA’s press material. “It can be used in more applications than a traditional rough terrain forklift, offering greater performance as a result.”

Electrek’s Take

AUSA C151E electric rough terrain forklift; via AUSA.
AUSA C151E electric rough terrain forklift; via AUSA.

AUSA’s messaging is spot-on here: because you can use the C151E – in fact, any electric equipment asset – is a broader set of environments and circumstances than a diesel asset, you can earn more work, get a higher utilization rate, and maximize not only your fuel savings, but generate income you couldn’t generate without it.

“More, more, and more” is how a smart fleet operator is looking at battery power right now, and that’s the angle, not the “messy middle,” that the industry needs to be talking about.

SOURCE | IMAGES: AUSA, via Equipment World.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

The aluminum sector isn’t moving to the U.S. despite tariffs — due to one key reason

Published

on

By

The aluminum sector isn't moving to the U.S. despite tariffs — due to one key reason

HAWESVILLE, KY – May 10

Plant workers drive along an aluminum potline at Century Aluminum Company’s Hawesville plant in Hawesville, Ky. on Wednesday, May 10, 2017. (Photo by Luke Sharrett /For The Washington Post via Getty Images)

Aluminum

The Washington Post | The Washington Post | Getty Images

Sweeping tariffs on imported aluminum imposed by U.S. President Donald Trump are succeeding in reshaping global trade flows and inflating costs for American consumers, but are falling short of their primary goal: to revive domestic aluminum production.

Instead, rising costs, particularly skyrocketing electricity prices in the U.S. relative to global competitors, are leading to smelter closures rather than restarts.

The impact of aluminum tariffs at 25% is starkly visible in the physical aluminum market. While benchmark aluminum prices on the London Metal Exchange provide a global reference, the actual cost of acquiring the metal involves regional delivery premiums.

This premium now largely reflects the tariff cost itself.

In stark contrast, European premiums were noted by JPMorgan analysts as being over 30% lower year-to-date, creating a significant divergence driven directly by U.S. trade policy.

This cost will ultimately be borne by downstream users, according to Trond Olaf Christophersen, the chief financial officer of Norway-based Hydro, one of the world’s largest aluminum producers. The company was formerly known as Norsk Hydro.

“It’s very likely that this will end up as higher prices for U.S. consumers,” Christophersen told CNBC, noting the tariff cost is a “pass-through.” Shares of Hydro have collapsed by around 17% since tariffs were imposed.

Stock Chart IconStock chart icon

hide content

The downstream impact of the tariffs is already being felt by Thule Group, a Hydro customer that makes cargo boxes fitted atop cars. The company said it’ll raise prices by about 10% even though it manufactures the majority of the goods sold in the U.S locally, as prices of raw materials, such as steel and aluminum, have shot up.

But while tariffs are effectively leading to prices rise in the U.S., they haven’t spurred a revival in domestic smelting, the energy-intensive process of producing primary aluminum.

The primary barrier remains the lack of access to competitively priced, long-term power, according to the industry.

“Energy costs are a significant factor in the overall production cost of a smelter,” said Ami Shivkar, principal analyst of aluminum markets at analytics firm Wood Mackenzie.  “High energy costs plague the US aluminium industry, forcing cutbacks and closures.”

“Canadian, Norwegian, and Middle Eastern aluminium smelters typically secure long-term energy contracts or operate captive power generation facilities. US smelter capacity, however, largely relies on short-term power contracts, placing it at a disadvantage,” Shivkar added, noting that energy costs for U.S. aluminum smelters were about $550 per tonne compared to $290 per tonne for Canadian smelters.

Recent events involving major U.S. producers underscore this power vulnerability.

In March 2023, Alcoa Corp announced the permanent closure of its 279,000 metric ton Intalco smelter, which had been idle since 2020. Alcoa said that the facility “cannot be competitive for the long-term,” partly because it “lacks access to competitively priced power.”

Similarly, in June 2022, Century Aluminum, the largest U.S. primary aluminum producer, was forced to temporarily idle its massive Hawesville, Kentucky smelter – North America’s largest producer of military-grade aluminum – citing a “direct result of skyrocketing energy costs.”

Century stated the power cost required to run the facility had “more than tripled the historical average in a very short period,” necessitating a curtailment expected to last nine to twelve months until prices normalized.

The industry has also not had a respite as demand for electricity from non-industrial sources has risen in recent years.

Hydro’s Christophersen pointed to the artificial intelligence boom and the proliferation of data centers as new competitors for power. He suggested that new energy production capacity in the U.S., from nuclear, wind or solar, is being rapidly consumed by the tech sector.

“The tech sector, they have a much higher ability to pay than the aluminium industry,” he said, noting the high double-digit margins of the tech sector compared to the often low single-digit margins at aluminum producers. Hydro reported an 8.3% profit margin in the first quarter of 2025, an increase from the 3.5% it reported for the previous quarter, according to Factset data.

“Our view, and for us to build a smelter [in the U.S.], we would need cheap power. We don’t see the possibility in the current market to get that,” the CFO added. “The lack of competitive power is the reason why we don’t think that would be interesting for us.”

How the massive power draw of generative AI is overtaxing our grid

While failing to ignite domestic primary production, the tariffs are undeniably causing what Christophersen termed a “reshuffling of trade flows.”

When U.S. market access becomes more costly or restricted, metal flows to other destinations.

Christophersen described a brief period when exceptionally high U.S. tariffs on Canadian aluminum — 25% additional tariffs on top of the aluminum-specific tariffs — made exporting to Europe temporarily more attractive for Canadian producers. Consequently, more European metals would have made their way into the U.S. market to make up for the demand gap vacated by Canadian aluminum.

The price impact has even extended to domestic scrap metal prices, which have adjusted upwards in line with the tariff-inflated Midwest premium.

Hydro, also the world’s largest aluminum extruder, utilizes both domestic scrap and imported Canadian primary metal in its U.S. operations. The company makes products such as window frames and facades in the country through extrusion, which is the process of pushing aluminum through a die to create a specific shape.

“We are buying U.S. scrap [aluminium]. A local raw material. But still, the scrap prices now include, indirectly, the tariff cost,” Christophersen explained. “We pay the tariff cost in reality, because the scrap price adjusts to the Midwest premium.”

“We are paying the tariff cost, but we quickly pass it on, so it’s exactly the same [for us],” he added.

RBC Capital Markets analysts confirmed this pass-through mechanism for Hydro’s extrusions business, saying “typically higher LME prices and premiums will be passed onto the customer.”

This pass-through has occurred amid broader market headwinds, particularly downstream among Hydro’s customers.

RBC highlighted the “weak spot remains the extrusion divisions” in Hydro’s recent results and noted a guidance downgrade, reflecting sluggish demand in sectors like building and construction.

— CNBC’s Greg Kennedy contributed reporting.

Continue Reading

Trending