Connect with us

Published

on

Only two decades ago, some scientists were skeptical we could integrate more than about 20% renewable energy generation on the U.S. power grid. But we hit that milestone in 2020 — so, these days, experts’ sights are set on finding pathways toward a fully renewable national power system. And according to new research published in Joule, the nation could get a long way toward 100% cost-effectively; it is only the final few percent of renewable generation that cause a nonlinear spike in costs to build and operate the power system.

In “Quantifying the Challenge of Reaching a 100% Renewable Energy Power System for the United States,” analysts from the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) and DOE’s Office of Energy Efficiency and Renewable Energy (EERE) evaluate possible pathways and quantify the system costs of transitioning to a 100% renewable power grid for the contiguous United States. The research was funded by EERE’s Strategic Analysis Team.

“Our goal was to robustly quantify the cost of a transition to a high-renewable power system in a way that provides electric-sector decision-makers with the information they need to assess the cost and value of pursuing such systems,” said Wesley Cole, NREL senior energy analyst and lead author of the paper.

Expanding on previous work to simulate the evolution of the U.S. power system at unprecedented scale, the authors quantify how various assumptions about how the power system might evolve can impact future system costs. They show how costs can increase nonlinearly for the last few percent toward 100%, which could drive interest in non-electric-sector investments that accomplish similar decarbonization objectives with a lower total tab.

“Our results highlight that getting all the way to 100% renewables is really challenging in terms of costs, but because the challenge is nonlinear, getting close to 100% is much easier,” Cole said. “We also show how innovations such as lower technology costs, or alternate definitions for 100% clean energy such as including nuclear or carbon capture, can lower the cost of reaching the target.”

Advanced Methods Expand Our Understanding of High-Renewable Grids

This work builds on another Joule article released last month exploring the key unresolved technical and economic challenges in achieving a 100% renewable U.S. electricity system. While some aspects of 100% renewable power grids are well established, there is much we do not know. And because 100% renewable grids do not exist at the scale of the entire United States, we rely on models to evaluate and understand possible future systems.

“With increasing reliance on energy storage technologies and variable wind and solar generation, modeling 100% renewable power systems is incredibly complex,” said Paul Denholm, NREL principal energy analyst and coauthor of the paper. “How storage was used yesterday impacts how it can be used today, and while the resolution of our renewable resource data has improved tremendously in recent years, we can’t precisely predict cloudy weather or calm winds.”

Integrated energy pathways modernizes our grid to support a broad selection of generation types, encourages consumer participation, and expands our options for transportation electrification.

Many prior studies have modeled high-renewable electricity systems for a variety of geographies, but not many examine the entire U.S. grid. And even fewer studies attempt to calculate the cost of transitioning to a 100% renewable U.S. grid — instead, they typically present snapshots of systems in a future year without considering the evolution needed to get there. This work expands on these prior studies with several important advances.

First, the team used detailed production cost modeling with unit commitment and economic dispatch to verify the results of the capacity expansion modeling performed with NREL’s publicly available Regional Energy Deployment System (ReEDS) model. The production cost model is Energy Exemplar’s PLEXOS, a commercial model widely used in the utility industry.

“Over the past couple of years we put a tremendous amount of effort into our modeling tools to give us confidence in their ability to capture the challenges inherent in 100% renewable energy power systems,” Cole said. “In addition, we also tried to consider a broad range of future conditions and definitions of the 100% requirement. The combination of these efforts enables us to quantify the cost of a transition to a 100% clean energy system far better than we could in the past.”

The analysis represents the power system with higher spatial and technology resolution than previous studies in order to better capture differences in technology types, renewable energy resource profiles, siting and land-use constraints, and transmission challenges. The analysis also uniquely captures the ability to retrofit existing fossil plants to serve needs under 100% renewable scenarios and assesses whether inertial response can be maintained in these futures.

What Drives System Costs? Transition Speed, Capital Costs, and How We Define 100%

The team simulated a total of 154 different scenarios for achieving up to 100% renewable electricity to determine how the resulting system cost changes under a wide range of future conditions, timeframes, and definitions for 100% — including with systems that allow nonrenewable low-carbon technologies to participate.

“Here we use total cumulative system cost as the primary metric for assessing the challenge of increased renewable deployment for the contiguous U.S. power system,” said Trieu Mai, NREL senior energy analyst and coauthor of the paper. “This system cost is the sum of the cost of building and operating the bulk power system assets out to the year 2050, after accounting for the time value of money.”

To establish a reference case for comparison, the team modeled the system cost at increasing renewable energy deployment for base conditions, which use midrange projections for factors such as capital costs, fuel prices, and electricity demand growth. Under these conditions, the least-cost buildout grows renewable energy from 20% of generation today to 57% in 2050, with average levelized costs of $30 per megawatt-hour (MWh). Imposing a requirement to achieve 100% renewable generation by 2050 under these same conditions raises these costs by 29%, or less than $10 per MWh. System costs increase nonlinearly for the last few percent approaching 100%

Associated with the high renewable energy targets are substantial reductions in direct carbon dioxide (CO2) emissions. From the 57% least-cost scenario, the team translated the changes in system cost and CO2 emissions between scenarios into an average and incremental levelized CO2 abatement cost. The average value is the abatement cost relative to the 57% scenario, while the incremental value is the abatement cost between adjacent scenarios, e.g., between 80% and 90% renewables. In other words, the average value considers all the changes, while the incremental value considers only the change over the most recent increment.

Total bulk power system cost at a 5% discount rate (left) for the seven base scenarios and levelized average and incremental CO2 abatement cost (right) for those scenarios. The 2050 renewable (RE) generation level for each scenario is listed on the x-axis. The system costs in the left figure are subdivided into the four cost categories listed in the figure legend (O&M = operations and maintenance). The purple diamond on the y-axis in the left plot indicates the system cost for maintaining the current generation mix, which can be used to compare costs and indicates a system cost comparable to the 90% case.

Total bulk power system cost at a 5% discount rate (left) for the seven base scenarios and levelized average and incremental CO2 abatement cost (right) for those scenarios. The 2050 renewable (RE) generation level for each scenario is listed on the x-axis. The system costs in the left figure are subdivided into the four cost categories listed in the figure legend (O&M = operations and maintenance). The purple diamond on the y-axis in the left plot indicates the system cost for maintaining the current generation mix, which can be used to compare costs and indicates a system cost comparable to the 90% case. NREL

Notably, incremental abatement costs from 99% to 100% reach $930/ton, driven primarily by the need for firm renewable capacity — resources that can provide energy during periods of lower wind and solar generation, extremely high demand, and unplanned events like transmission line outages. In many scenarios, this firm capacity was supplied by renewable-energy-fueled combustion turbines, which could run on biodiesel, synthetic methane, hydrogen, or some other renewable energy resource to support reliable power system operation. The DOE Energy Earthshots Initiative recently announced by Secretary of Energy Jennifer M. Granholm includes the Hydrogen Shot, which seeks to reduce the cost of clean hydrogen by 80% to $1 per kilogram in one decade — an ambitious effort that could help reduce the cost of providing renewable firm capacity.

“When achieving a 100% renewable system, the costs are significantly lower if there is a cost-effective source of firm capacity that can qualify for the 100% definition,” Denholm said. “The last few percent cannot cost-effectively be satisfied using only wind, solar, and diurnal storage or load flexibility — so other resources that can bridge this gap become particularly important.”

Capital costs are the largest contributor to system costs at 100% renewable energy. Future changes in the capital costs of renewable technologies and storage can thus greatly impact the total system cost of 100% renewable grids. The speed of transition is also an important consideration for both cost and emission impacts. The scenarios with more rapid transitions to 100% renewable power were more costly but had greater cumulative emissions reductions.

“Looking at the low incremental system costs in scenarios that increase renewable generation levels somewhat beyond the reference solutions to 80%–90%, we see considerable low-cost abatement opportunities within the power sector,” Mai said. “The trade-off between power-sector emissions reductions and the associated costs of reducing those emissions should be considered in the context of non-power-sector opportunities to reduce emissions, which might have lower abatement costs — especially at the higher renewable generation levels.”

“The way the requirement is defined is an important aspect of understanding the costs of the requirement and associated emissions reduction,” Cole said. “For instance, if the 100% requirement is defined as a fraction of electricity sales, as it is with current state renewable polices, the cost and emissions of meeting that requirement are similar to those of the scenarios that have requirements of less than 100%.”

Additional Research Can Help the Power Sector Understand the Path Forward

While this work relies on state-of-the-art modeling capabilities, additional research is needed to help fill gaps in our understanding of the technical solutions that could be implemented to achieve higher levels of renewable generation, and their impact on system cost. Future work could focus on key considerations such as the scaling up supply chains, social or environmental factors that could impact real-world deployment, the future role of distributed energy resources, or how increased levels of demand flexibility could reduce costs, to name a few.

“While there is much left to explore, given the energy community’s frequent focus on using the electricity sector as the foundation for economy-wide decarbonization, we believe this work extends our collective understanding of what it might take to get to 100%,” Cole said.

Learn more about NREL’s energy analysis and grid modernization research.

Article courtesy of the NREL, the U.S. Department of Energy


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Kia’s EV3 is the best-selling retail EV in the UK right now

Published

on

By

Kia's EV3 is the best-selling retail EV in the UK right now

Kia’s electric SUVs are taking over. The EV3 is the best-selling retail EV in the UK this year, giving Kia its strongest sales start since it arrived 34 years ago. And it’s not just in the UK. Kia just had its best first quarter globally since it started selling cars in 1962.

Kia EV3 is the best-selling EV in the UK through March

In March, Kia sold a record nearly 20,000 vehicles in the UK, making it the fourth best-selling brand. It was also the second top-seller of electrified vehicles (EVs, PHEVs, and HEVs), accounting for over 55% of sales.

The EV3 remained the best-selling retail EV in the UK last month. Including the EV6, three-row EV9, and Niro EV, electric vehicles represented 21% of Kia’s UK sales in March.

Kia said the EV3 “started with a bang” in January, darting out as the UK’s most popular EV in retail sales. Through March, Kia’s electric SUV has held on to the crown. With the EV3 rolling out, Kia sold over 7,000 electric cars through March, nearly 50% more than in Q1 2024.

Advertisement – scroll for more content

The EV3 was the best-selling retail EV in the UK in the first quarter and the fourth best-selling EV overall, including commercial vehicles.

Kia-EV3-best-selling-EV
Kia EV3 Air 91.48 kWh in Frost Blue (Source: Kia UK)

Starting at £33,005 ($42,500), Kia said it’s the “brand’s most affordable EV yet.” It’s available with two battery packs, 58.3 kWh or 81.48 kWh, good for 430 km (270 miles) and 599 km (375 miles) of WLTP range, respectively.

Kia-EV3-best-selling-EV
From left to right: Kia EV6, EV3, and EV9 (Source: Kia UK)

With new EVs on the way, this could be just the start. Kia is launching several new EVs in the UK this year, including the EV4 sedan (and hatchback) and EV5 SUV. It also confirmed that the first PV5 electric vans will be delivered to customers by the end of the year.

Electrek’s Take

Globally, Kia sold a record 772,351 vehicles in the first quarter, its best since it started selling cars in 1962. With the new EV4, the brand’s first electric sedan and hatchback, launching this year, Kia looks to build on its momentum in 2025.

Kia has also made it very clear that it wants to be a global leader in the electric van market with its new Platform Beyond Vehicle (PBV) business, starting with the PV5 later this year.

Earlier today, we learned Kia’s midsize electric SUV, the EV5, is the fourth best-selling EV in Australia through March, outselling every BYD vehicle (at least for now). The EV5 is rolling out to new markets this year, including Canada, the UK, South Korea, and Mexico. However, it will not arrive in the US.

For those in the US, there are still a few Kia EVs to look forward to. Kia is launching the EV4 globally, including in the US, later this year. Although no date has been set, Kia confirmed the EV3 is also coming. It’s expected to arrive in mid-2026.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Podcast: Tesla’s disastrous deliveries, more Trump tariffs, EV delivery numbers, and more

Published

on

By

Podcast: Tesla's disastrous deliveries, more Trump tariffs, EV delivery numbers, and more

In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Tesla’s disastrous deliveries, more Trump tariffs, EV delivery numbers, and more.

The show is live every Friday at 4 p.m. ET on Electrek’s YouTube channel.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:

Advertisement – scroll for more content

We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the podcast:

Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET):

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

University of Michigan cracks rapid EV charging in freezing temps

Published

on

By

University of Michigan cracks rapid EV charging in freezing temps

Charging your EV in freezing weather could soon become dramatically faster, thanks to a big breakthrough from the University of Michigan engineers.

Neil Dasgupta, U-M associate professor of mechanical engineering and materials science and engineering and corresponding author of a study published in Joule, and his team have developed an innovative battery structure and coating that can boost lithium-ion EV battery charging speeds by a whopping 500%, even at frigid temperatures as low as 14F (-10C). “Charging an EV battery takes 30 to 40 minutes even for aggressive fast charging, and that time increases to over an hour in the winter,” Dasgupta explained. “This is the pain point we want to address.”

Freezing weather has traditionally been harsh on EV batteries because it slows down the movement of lithium ions, resulting in slower charging speeds and reduced battery life. Automakers have tried thickening battery electrodes to extend driving range, but this makes some of the lithium hard to access, making charging even slower.

Previously, Dasgupta’s group sped up battery charging using lasers to carve pathways around 40 microns in size into the graphite anode. This allowed lithium ions to reach deeper into the battery more quickly. However, cold-weather performance still lagged because a chemical layer formed on the electrodes, blocking the ions. Dasgupta compares this barrier to “trying to cut cold butter,” making charging inefficient.

Advertisement – scroll for more content

To solve this, the team coated the battery with a thin, glassy material made of lithium borate-carbonate—only 20 nanometers thick—which prevented the problematic chemical layer from forming. Combined with the microscopic channels, the results were groundbreaking: the modified batteries retained 97% of their capacity even after 100 fast-charging cycles in freezing temperatures.

“We envision this approach as something that EV battery manufacturers could adopt without major changes to existing factories,” Dasgupta noted. “For the first time, we’ve shown a pathway to simultaneously achieve extreme fast charging at low temperatures, without sacrificing the energy density of the lithium-ion battery.”

This innovation could tackle one of the biggest concerns holding potential EV buyers back.

The new battery tech is moving closer to commercialization, supported by the Michigan Economic Development Corporation’s Michigan Translational Research and Commercialization (MTRAC) Advanced Transportation Innovation Hub. The research devices were built at U-M’s Battery Lab and studied with help from the Michigan Center for Materials Characterization.

U-M Innovation Partnerships assisted the team in applying for patents, and Arbor Battery Innovations has licensed the technology for market deployment. Dasgupta and the University of Michigan hold financial stakes in Arbor Battery Innovations.

Read more: California now has nearly 50% more EV chargers than gas nozzles


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending