Connect with us

Published

on

Jim Mellon, the billionaire investor-author, has said the food production industry will transform as early as 2030 and that 50 percent of all meat eaten by humans on the planet will either be plant-based or cell ag (cellular agriculture) produced within the next 10 years. He said that half of the seafood will also be produced using cell aquaculture within this decade. Some consider plant-based meats, and that manufactured using the cell culture technique, mimic the feel and taste of real meat while being healthier as they contain low saturated fat and calories. The high carbon footprint of meat is also making experts urge people to reduce their consumption of animal meat to save the environment.

The dairy industry will not be the same “as we currently know it” in 10 years, Mellon told the Vegconomist.

The author of Moo’s Law: An Investor’s Guide to the New Agrarian Revolution said the biotech industry is looking at “griddle parity” so that the price of food produced by it is cheaper or equivalent to traditionally farmed foods because people cannot be asked to pay large amounts of money for something they consume daily.

Mostly used in the electricity-generation industry, the term “grid parity” is a concept that strives to make the price of renewable energy like wind or solar equivalent to fossil fuel-generated energy. So, according to Mellon, the biotech industry is currently evolving processes that will help them bring down the price of plant-based foods to that of conventionally farmed foods.

“So we are on the cusp. We are in the very early stage…of an industry that’s going to completely blow away,” he said, adding that the way animals are treated, the way meat is produced, and the way we consume meat will all change.

“In terms of meat, I’m going to make the prediction, which is not an absurd prediction,” the British investor said, making it clear that 50 percent of all meat humans eat will either be plant-based or cell ag produced within ten years. And for seafood, which is also a very large market, he predicted that more than half of seafood will be produced by cell aquaculture within ten years.

According to the United Nations Environment Agency, meat consumption one of the biggest contributors to greenhouse gasses (GHGs) and it has warned that “we will pay the environmental and human price—unless we make a change now”.


Affiliate links may be automatically generated – see our ethics statement for details.

For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.

CBSE Developing IT System to Help Schools Tabulate Class 12 Board Exam Results

Google Developing New Measure of Skin Tones to Curb Bias in Products

Continue Reading

Science

Elon Musk’s Neuralink Cleared to Start Brain Chip Trial in Canada

Published

on

By

Elon Musk’s Neuralink Cleared to Start Brain Chip Trial in Canada

Canada’s University Health Network said its Toronto Western Hospital would be the first non-US site of a trial for a device created by Neuralink Corp., Elon Musk’s brain-implant company. 

“We are incredibly proud to be at the forefront of this research advancement in neurosurgery,” UHN Chief Executive Officer Kevin Smith said in an announcement. He also said UHN would be the “first and exclusive” site for the trial in Canada, but did not say when it would begin.

On Wednesday, Neuralink said that it had received approval from regulators in Canada to launch clinical trials for its device in that country.

“Health Canada has approved the launch of our first clinical trial in Canada!” the company posted on X, the social media service also owned by Musk. “Recruitment is now open.”

Neuralink added that it was seeking patients with Quadriplegia due to ALS, also known as Lou Gehrig’s disease, or spinal cord injury.

Health Canada didn’t immediately provide a comment.

For months, Neuralink has been recruiting patients in the US, UK and Canada, with links to a registry on its website. Other companies in the field, such as Synchron Inc., are recruiting for their own future trials.

Neuralink’s first product aims to allow patients to control external devices, such as computers, through their thoughts. Neuralink is also working on treating other conditions such as blindness, but that project is further away. In the distant future, Musk has said Neuralink could work with healthy patients on functions such as augmenting memory.

Its first human patient, Noland Arbaugh, was implanted with Neuralink’s device earlier this year, at the Barrow Neurological Institute in Phoenix.

© 2024 Bloomberg L.P.

(This story has not been edited by NDTV staff and is auto-generated from a syndicated feed.)

Continue Reading

Science

NASA’s Perseverance Rover Finds Organic Molecules on Mars

Published

on

By

NASA’s Perseverance Rover Finds Organic Molecules on Mars

NASA‘s Perseverance rover, currently exploring Mars’ Jezero Crater, has detected carbon-based molecules that may hint at ancient life on the Red Planet. These findings, reported last summer, were made using SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals), an advanced instrument capable of identifying potential organic compounds. While the discovery has raised hopes within the scientific community, questions about its accuracy remain, as researchers consider alternative explanations for the data.

Detection of Organic Molecules and Its Challenges

The SHERLOC instrument utilises two techniques: ultraviolet luminescence and Raman spectroscopy. Dr Ken Farley, Project Scientist for the Perseverance mission, explained that SHERLOC can detect organic matter potentially present in Mars’ environment. Luminescence, while highly sensitive, lacks specificity, as non-organic materials can also produce similar signals. Raman spectroscopy provides more precise chemical fingerprints, but its sensitivity is limited. This combination allows researchers to hypothesise about the presence of organic molecules, but uncertainties in the data complicate definitive conclusions.

Potential Alternative Explanations

A study published in Science Advances posited that the detected signals could originate from inorganic substances, such as defects in minerals like phosphate and silicate or the presence of cesium ions. Dr Eva Scheller, a planetary scientist at MIT and co-author of the study, highlighted that multiple chemical compositions can produce similar spectral patterns. Such overlaps, known as degeneracy in spectroscopy, make it challenging to interpret data reliably. The original researchers also acknowledged these alternative explanations, underscoring the inherent difficulties of remote Mars analyses.

Implications and Future Investigations

While the presence of organic molecules might not confirm life, Jezero Crater’s history as an ancient lakebed increases the significance of the discovery. Both Farley and Scheller agree that a Mars Sample Return mission could provide the clarity necessary to determine whether these compounds originated from biological or abiotic processes. Until then, debates surrounding the findings are expected to continue, illustrating the evolving nature of scientific inquiry.

Continue Reading

Science

NASA Showcases New AI Tools That Can Help In Scientific Research

Published

on

By

NASA Showcases New AI Tools That Can Help In Scientific Research

At the Supercomputing Conference or SC2024, NASA’s Associate Administrator for the Science Mission Directorate, Nicola Fox, detailed new computational tools intended to advance space science. NASA plans to employ a large language model across its science divisions, bolstered by foundation models tailored to Earth science, heliophysics, astrophysics, planetary science, and biological and physical sciences. This strategy was illustrated through a heliophysics foundation model, which applies extensive data from NASA’s Solar Dynamics Observatory to forecast solar wind events and track sunspot activity.

Evolution of Space Computing and the Voyager Missions

Fox recounted how NASA’s Voyager missions, launched in the 1970s, served as milestones in computing for space exploration. Operating with early semiconductor memory, these spacecraft provided unique insights, including discoveries of Jupiter’s faint ring and Saturn’s additional moons.

Although far surpassed by modern technology, the Voyager missions revealed the possibilities for future computational breakthroughs in space science. Since then, NASA’s computational requirements have expanded, with over 140 petabytes of data now stored and shared under open science policies, allowing global scientists to access and benefit from NASA’s research.

Real-Time Data and Earth Observation Advances

NASA’s Earth Information Center was presented as a prime example of federal collaboration. It integrated data on environmental changes with insights from agencies such as NOAA and the EPA.

Using data from satellite missions, Fox showcased NASA’s ability to observe natural events like wildfires in near real-time. She also noted advancements in wildfire detection from polar-orbiting satellites, allowing precise tracking of hot spots. She said that data-driven efforts like these are critical as NASA continues to enhance the monitoring of natural phenomena on Earth.

Searching for Life Beyond Earth

Towards the end, she addressed NASA’s ongoing investigations into extraterrestrial life. Recent studies of exoplanets, such as LP 791-18d, underscore this pursuit. NASA’s observatories, including the Transiting Exoplanet Survey Satellite (TESS). It has facilitated the detection of thousands of exoplanets, aiding in the search for conditions that might support life beyond Earth.

Fox concluded by highlighting the powerful role that AI and computing now play in analysing the massive datasets produced by NASA’s missions, making it possible to explore questions that were previously out of reach.

Continue Reading

Trending