Connect with us

Published

on

Oh, those pesky wind turbines, running around the countryside cluttering up the landfills with their big old unrecyclable blades. That’s the picture drawn by critics, but not for long. A new scheme is afoot that takes the old blades from a wind turbine and recycles them into new energy storage systems for wind and solar power.

What To Do With Those Pesky Old Wind Turbine Blades

Actually, the wind turbine recycling issue is a bit of a red herring. After all, the fossil energy industry has squeezed who knows how many trillions of tons of raw resources out of the ground, to be used once and never to be replaced, reclaimed, recycled, or reused again, let alone upcycled, unless you count their contribution to global carbon load as a kind of recycling, which is a bit of a stretch.

Nevertheless, the global wind industry is coming of age in an era when public policy and consumer demand are beginning to steer the global economy into a more sustainable, circular form. That pushes wind turbine blade recycling into priority status.

Wind Turbine Blades & The Circular Economy

The typical wind turbine blade lasts about 20 years, which means that a flood of spent blades is about to hit the global market.

Wouldn’t you know it, the US Department of Energy is right on top of the circular economy thing. Last month the agency’s Wind Energy Technologies office ran down some of the wind turbine blade recycling solutions bubbling up through the R&D pipeline and noted that the most effective strategy would be to design recycling and reuse into materials, components, and systems from the very beginning.

“A circular economy for energy materials also means that technology should be engineered from the start to require fewer materials, resources, and energy while lasting longer and having components that can easily be broken down for use in subsequent applications,” the Energy Department explained, citing a new lightening-resistant and erosion-resistant blade coatings developed by the firms Arctura and Resodyn Corp.

In partnership with the firm Arkema, Inc., the National Renewable Energy Laboratory has also been hammering away at a new resin-based turbine blade material that can be reduced to a liquid and reformed into new blades and other items, while reducing  labor and energy inputs.

Better Ways To Recycle Old Blades

That’s all well and good for future generations of wind turbine blades, but what about those in operation now?

Yes, what about them? Fiberglass can be recovered from spent blades, but the range of application is limited because recycled fiberglass tends to lose quality.

The Energy Department has an answer for that, too. They are especially excited about a research partnership between the University of Tennessee and the firm Carbon Rivers, which involves a heat-based method for reclaiming fiberglass from wind turbines and recycling it into a high-value material for various industries including aerospace.

Extending the useful lifespan of old wind turbine blades is also part of the Energy Department’s strategy, including the use of drones and other advanced systems for monitoring, maintenance, and repair.

Hey, What About Recycling Wind Turbine Blades For Energy Storage?

Into this picture steps the Swiss energy storage firm Energy Vault, which has crossed the CleanTechnica radar previously on account of its gravity-based energy storage system.

The Energy Vault concept is similar to pumped hydro energy storage. Instead of storing electricity in a lithium-ion battery or other chemical systems, you deploy excess wind or solar power to raise something heavy upwards. When demand for electricity rises, gravity does all the heavy lifting. You allow your heavy thing — water, or in Energy Vault’s case, 35-ton blocks — to fall back to its starting point, and it generates electricity on the way down.

Pumped hydro is not a new technology, and here in the US it still dominates the energy storage field. Its advantages over battery-type systems include holding massive amounts of energy for long periods of time.

The problem is location, location, location. The Energy Department has been working on new pumped hydro technology that could enable the nation to grow the domestic industry, but for now there are few prospects for constructing new pumped hydro reservoirs in the US.

Energy Vault’s block-type gravity system could help resolve the location issue, since it does not require massive new infrastructure and copious amounts of water. All it really needs is 35-ton blocks, and those could be made from just about anything, including wind turbine blades.

Let The Wind Power – Energy Storage Mashup Begin

And, that’s where the company Enel Green Power comes in. The company, which comes under the Enel Group umbrella, has been aiming to hitch its renewable energy activities to new forms of energy storage, and it is very excited about the potential for Energy Vault to provide a home for spent wind turbine blades.

“The benefits of this solution are the same as those of a pumped storage hydro plant, but at a much lower cost, with greater possibility of being replicated in any geographical context and greater efficiency: the Energy Vault technology can even exceed an efficiency level of 80%,” EGP enthuses.

“Moreover, there are clear benefits compared to batteries: a plant of this type is not exposed to storage medium degradation (no need for augmentation over time), risk of fire, has a long lifespan of 30-35 years and its eventual dismantling will not pose particular difficulties, as the blocks are composed of inert materials and are created directly on site,” EGP adds.

Energy Vault already has a 5-megawatt demonstration facility under its belt, and it recently introduced its new “EVx” configuration that requires 40% less height than its former design. Last week the company signed an agreement with EGP to study the feasibility of a system that weighs in at “a few dozen megawatt-hours,” using material from spent wind turbine blades to form the blocks.

EGP anticipates that the study will greenlight the construction plan for a new Energy Vault project, deploying the new EVx design, in the coming year.

So, What About The Birds?

Yes, what about them? Years before the recycling issue popped up, wind power critics (looking at you, fossil energy lobby) were accusing wind turbines of causing birds to die, conveniently overlooking the fact that wind turbines are a relatively small part of a huge problem.

Practically everything that people make causes birds to die, and the worst offenders by far are buildings, overhead power lines, agricultural chemicals, and various devices used legally for hunting, among other things. For that matter, domestic cats — oh, but why beat a dead horse?

The point is that everything is killing birds. The counterfactual focus on wind turbines began about a dozen years ago and it was picked up and promoted by former President Trump, who promoted the wind turbine canard to help propel himself into office the first time.

It didn’t work the second time, which is good news for the birds, because Trump’s first and only administration spent considerable time and energy on tearing the guts out of a treaty aimed at preventing migratory bird deaths related to fossil energy activities among various other circumstances.

Oh well, water under the bridge. Migratory birds are all but certain to get a share of President Joe Biden’s love for all things sustainable, and new strategies have already emerged for reducing wind power’s relatively small share of bird impacts.

Back in 2003, for example, researchers at the National Renewable Energy Laboratory suggested that simply applying different colors and patterns to wind turbine blades could make a difference. That formed the basis for a long term study that recently demonstrated a significant reduction in risk of collision, especially for raptors.

The US Fish And Wildlife Service’s Avian Radar Project indicates that adjustments to wind turbine locations, hours of operation, and lighting can also reduce risks. Automatic shutdown systems triggered by cameras and other remote devices can help, and researchers are beginning to study how today’s generation of larger, more powerful turbines is also contributing to risk reduction.

Follow me on Twitter @TinaMCasey.

Photo: Energy Vault gravity storage system via Enel Green Power.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla Model 3 prototype spotted ahead of rumored design refresh

Published

on

By

Tesla Model 3 prototype spotted ahead of rumored design refresh

A new Tesla Model 3 prototype with camouflage has been spotted in California ahead of a rumored refresh coming next year.

Over the last week, there have been rumors that Tesla is working on a Model 3 refresh that would come during the second half of 2023.

The project is reportedly codenamed ‘Highland’.

For a few years now, Tesla has been integrating its large casting technology into Model Y with single large casting parts replacing dozens of parts in the electric SUV.

This new technology has enabled Tesla to greatly improve manufacturing efficiency with Model Y compared to Model 3. CEO Elon Musk said that Tesla will bring the same technology to Model 3 eventually, but he couldn’t exactly say when.

The problem is that such an update to the Model 3 would temporarily slow down production and Tesla couldn’t afford that while it was still ramping up Model Y production.

However, Model Y production is now starting to exceed Model 3 production and it could be good timing for Tesla to update the Model 3 and use a design refresh to introduce the large from and rear casting.

Now a new Model 3 prototype has been spotted in Santa Cruz, California by Twitter user omg_Tesla/Rivian:

The Model 3 is equipped with manufacturer plates, which would indicate that it is owned by Tesla, and combined with the heavy camouflage in the front and back of the vehicle, it likely points to the automaker testing an updated version of the electric sedan.

However, not much can be discerned from the pictures thanks to the camouflage, which even covers large parts of the headlights.

Nonetheless, some commenters on Twitter did notice what could potentially be a camera embedded in the corner of the front right headlight:

It’s barely visible and therefore unconfirmed, but it would make sense to place a camera around that spot since Tesla’s current self-driving sensor suite has a blind spot around the bumper and it could also help with the creeping forward to see traffic before taking a turn in Full Self-Driving – something FSD Beta has issues with right now.

Tesla has always said that it would keep improving its Autopilot and Full Self-Driving hardware, but current owners who bought vehicles with the promise that self-driving will be enabled through software updates are concerned that Tesla might find that it would need a new sensor suite to achieve the promise.

What do you think about this Tesla Model 3 prototype? Is the camouflage hiding a Model 3 design refresh? A new Autopilot sensor suite? Let us know what you think in the comment section below.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OPEC+ agrees to stick to its existing policy of reducing oil production ahead of Russia sanctions

Published

on

By

OPEC+ agrees to stick to its existing policy of reducing oil production ahead of Russia sanctions

Led by Saudi Arabia and Russia, OPEC+ agreed in early October to reduce production by 2 million barrels per day from November.

Vladimir Simicek | Afp | Getty Images

An influential alliance of oil producers on Sunday agreed to stay the course on output policy ahead of a pending ban from the European Union on Russian crude.

OPEC and non-OPEC producers, a group of 23 oil-producing nations known as OPEC+, decided to stick to its existing policy of reducing oil production by 2 million barrels per day, or about 2% of world demand, from November until the end of 2023.

Energy analysts had expected OPEC+ to consider fresh price-supporting production cuts ahead of a possible double blow to Russia’s oil revenues.

The European Union is poised to ban all imports of Russian seaborne crude from Monday, while the U.S. and other members of the G-7 will impose a price cap on the oil Russia sells to countries around the world.

The Kremlin has previously warned that any attempt to impose a price cap on Russian oil will cause more harm than good.

Oil prices have fallen to below $90 a barrel from more than $120 in early June ahead of potentially disruptive sanctions on Russian oil, weakening crude demand in China and mounting fears of a recession.

Led by Saudi Arabia and Russia, OPEC+ agreed in early October to reduce production by 2 million barrels per day from November. It came despite calls from the U.S. for the group to pump more to lower fuel prices and help the global economy.

Continue Reading

Environment

What’s the status of California’s upcoming $10M electric bike rebate program?

Published

on

By

What's the status of California's upcoming M electric bike rebate program?

California allocated $10 million for a rebate program to help make electric bikes more affordable. But hang on there; it’s not active quite yet.

The move is part of a years-long effort to help reduce the price of expensive electric bicycles for state residents. The ultimate goal is to make it easier for commuters to switch from car transportation to e-bike transportation.

It makes sense when you consider the long list of benefits. From cleaner air to reduced traffic and improved health/fitness, electric bikes solve many of the problems plaguing California (and the rest of the country).

But the path towards a statewide incentive program to reduce e-bike prices hasn’t been quick or easy.

specialized globe haul st e-bike

California has earmarked over $1 billion this year as incentives for electric cars and charging infrastructure, according to Streetsblog. That’s in addition to the billions already put into electric car incentives.

Back in 2019 electric bikes finally got the attention they deserved from lawmakers when California’s S.B. 400 was passed, which included a section that permitted electric bikes to be included in future clean air vehicle incentive programs.

That paved the way for the possibility of statewide e-bike rebate programs, but it didn’t actually create any.

Last year California got one step closer to that goal when it included a $10M allocation in the state budget for an e-bike rebate program. As Assemblymember Boerner Horvath said at the time:

“Making e-bikes more affordable is one of the most effective ways to get Californians out of their cars and reduce emissions. I’m thrilled that the full funding I requested for purchase incentives, education, and training is included in the budget we approved. This program represents a priority shift in the right direction and, once implemented, will help folks from all backgrounds choose a healthier, happier way to get around.”

That was another huge step in the right direction, but it hasn’t yet resulted in an active program.

That’s expected to begin in early 2023, with a number of key guidelines for California’s first statewide e-bike voucher program already laid out.

According to the California Bicycle Association, the program will create a $750 voucher for a standard electric bicycle and a $1,500 voucher for a cargo electric bicycle. There will be additional incentives for anyone whose income is under 225% of the federal poverty level (FPL) or who lives in disadvantaged communities.

But in order to qualify for the voucher, participants’ household income must be below 400% of the FPL, which amounts to $51,000 for a single person and $106,000 for a family of four at current figures.

The program will include Class 1 electric bikes (pedal assist up to 20 mph or 32 km/h) and Class 2 electric bikes (pedal assist and/or throttle up to 20 mph or 32 km/h), but will NOT include Class 3 e-bikes (pedal assist up to 28 mph).

Qualifying bikes must also either be purchased at a local bike shop in California, or online from a company that has “a business location in California”.

The move could see California align with other states that have created or already implemented electric bicycle incentives. Vermont became the first state in the US to offer a statewide e-bike rebate program. Oregon is also working on creating an e-bike incentive program that could soon become law, as New York attempts to do the same.

Many cities such as Denver, Colorado have also implemented their own local programs, though the funding is usually much smaller than statewide programs.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending