Connect with us

Published

on

An 18-year-old physics student whose father heads an investment management firm is set to take the place of a person who put up $28 million (roughly Rs. 210 crores) in an auction to take part in the inaugural space tourism flight for billionaire Jeff Bezos’ Blue Origin company.

Blue Origin said on Thursday Oliver Daemen will join the four-member all-civilian crew for Tuesday’s scheduled flight after the auction winner, whose name had not been made public, dropped out due to unspecified “scheduling conflicts.” Daemen becomes the company’s first paying customer.

His addition means that the flight is set to include the oldest person ever to go to space – 82-year-old trailblazing female aviator Wally Funk – and the youngest, Daemen, according to Blue Origin. Joining them for Blue Origin’s suborbital launch will be Bezos and his brother Mark Bezos.

Daemen is working to obtain his pilot’s license and is set to attend the University of Utrecht in the Netherlands to study physics and innovation management in September, Blue Origin said. His father is Somerset Capital Partners CEO and founder Joes Daemen.

The elder Daemen “paid for the seat and chose to fly Oliver,” Blue Origin said. The company declined to say how much was paid.

“Flying on New Shepard will fulfill a lifelong dream for Oliver, who has been fascinated by space, the Moon, and rockets since he was four,” the company said in a news release.

Bezos has been locked in a race with billionaire rivals Richard Branson and Elon Musk as they seek to usher in a new era of commercial space travel in a tourism market that Swiss bank UBS estimates could be worth $3 billion (roughly Rs. 22,360 crores) annually in a decade.

New Shepard is a 60-foot-tall (18.3-meters-tall) and fully autonomous rocket-and-capsule combo that cannot be piloted from inside the spacecraft. The launch is set for a site in West Texas.

Branson, the British billionaire businessman, was aboard his company Virgin Galactic’s rocket plane for its pioneering suborbital flight from New Mexico on Sunday.

© Thomson Reuters 2021


Continue Reading

Science

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Published

on

By

Earth’s Spin to Speed Up Briefly, Causing Shorter Days This Summer

Reports indicate that for three days this summer – July 9, July 22 and August 5 – Earth’s rotation will speed up slightly, trimming 1.3 to 1.5 milliseconds off each day. Imperceptible in everyday life, this shift underscores how the Moon’s position influences our planet’s spin. For reference, the shortest day on record was July 5, 2024, lasting 1.66 milliseconds less than 24 hours. Over billions of years Earth’s rotation has slowly lengthened, but recent data show speedups. Scientists say monitoring these tiny changes is important for understanding Earth’s dynamics and timekeeping.

Causes of Faster Spin

According to timeanddate.com, the shortest-ever recorded day was on July 5, 2024, which was 1.66 milliseconds shy of 24 hours. The acceleration is largely driven by the Moon’s gravity. On those dates (July 9, July 22 and August 5), the Moon will lie far north or south of Earth’s equator, weakening its tidal braking on our planet’s spin. As a result, Earth rotates a bit faster – like spinning a top held at its ends. Seasonal shifts in mass distribution also affect rotation. Richard Holme of the University of Liverpool notes that summer growth and melting snow in the Northern Hemisphere move mass outward from Earth’s axis, slowing the spin in the same way an ice skater slows by extending her arms.

Timekeeping and Technology

Shifts in day length are handled by precise timekeeping. The International Earth Rotation and Reference Systems Service (IERS) monitors Earth’s spin and adds leap seconds to keep Coordinated Universal Time (UTC) in sync with solar time. Normally a second is added when Earth’s rotation slows, but if the spin-up trend continues, scientists have floated a “negative leap second” – removing a second – to realign clocks.

Dr. Michael Wouters of Australia’s National Measurement Institute says this fix would be unprecedented, and notes that even if a few seconds accumulated over decades, it would likely go unnoticed. Dr. David Gozzard of the University of Western Australia points out that GPS satellites, communications networks and power grids rely on atomic clocks synced to nanoseconds, and that millisecond-scale changes in Earth’s rotation are easily absorbed by these systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Unpacked 2025: Galaxy Z Flip 7 Launched in India With 4.1-Inch Cover Screen, Exynos 2500 SoC



The Last of Us Part 2 Remastered Gets New Free Update That Allows Players to Experience Story Chronologically

Continue Reading

Science

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

Published

on

By

James Webb Telescope Spots Rare ‘Cosmic Owl’ Formed by Colliding Galaxies

NASA’s James Webb Space Telescope has captured the “Cosmic Owl,” a startling owl-faced pair of colliding ring galaxies. This double-ring structure is exceptionally rare: ring galaxies account for just 0.01% of known galaxies, and two colliding rings is almost unheard of. The JWST image provides an exceptional natural laboratory for studying galaxy evolution. Models suggest the galactic clash began roughly 38 million years ago, meaning the owl-like shape could persist for a long time. A team led by Ph.D. student Mingyu Li of Tsinghua University in China announced the finding.

Spotting the ‘Cosmic Owl’

According to Mingyu Li, the first author of the new study , he and his team found the Owl by combing through public JWST data from the COSMOS field. The twin ring galaxies jumped out thanks to JWST’s infrared imaging. Each ring is about 26,000 light-years across (a quarter of the Milky Way), and each harbors a supermassive black hole at its core – one of the Owl’s eyes.

JWST images show the collision interface – the Owl’s beak – ablaze with activity. ALMA observations find a huge clump of molecular gas there – the raw fuel for new stars – being squeezed by the impact. Radio observations show a jet from one galaxy’s black hole slamming into the gas. Li notes the shockwave-plus-jet have ignited an intense starburst, turning the beak into a stellar nursery.

Rarity and Significance

Ring galaxies are extremely rare (≈0.01% of all galaxies), so finding two in collision is unheard of. Another team independently identified the same system and called it the “Infinity Galaxy”. Li says this event is an exceptional natural laboratory for studying galaxy evolution. In one view, researchers can see black holes feeding, gas compressing and starbursts happening together.

Li points out the collision’s shockwave and jet have triggered an intense starburst in the beak. He says this may be a crucial way to turn gas into stars rapidly, which could help explain how young galaxies built up their mass so quickly. Simulations will clarify the precise collision conditions needed to produce such a rare twin-ring “owl” shape.

Continue Reading

Science

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

Published

on

By

MIT Develops Low-Resource AI System to Control Soft Robots with Just One Image

The use of conventional robots for industry and hazardous environments is easy for the purpose of control and modelling. However, these are too rigid to operate in confined places and uneven terrain. The soft bio-related roots are better adapted to the environment and manoeuvring in inaccessible places. Such flexible capabilities would need an array of on-board sensors and spacious models which are tailored to each robot design. Having a new and less resource-demanding approach, the researchers at MIT have developed a far less complex, deep learning control system that teaches the soft, bio-inspired robots to follow the command from a single image only.

Soft Robots Learn from a Single Image

As per Phys.org, this research has been published in the journal Nature, by training a deep neural network on two to three hours of multi-view images of various robots executing random commands, the scientists trained the network to reconstruct the range and shape of mobility from only one image. The previous machine learning control designs need customised and costly motion systems. Lack of a general-purpose control system limited the applications and made prototyping less practical.

The methods unshackle the robotics hardware design from the ability to model it manually. This has dictated precision manufacturing, extensive sensing capabilities, costly materials and reliance on conventional and rigid building blocks.

AI Cuts Costly Sensors and Complex Models

The single camera machine learning approach allows the high-precision control in tests on a variety of robotic systems, adding the 3D-printed pneumatic hand, 16-DOF Allegro hand, a soft auxetic wrist and a low-cost Poppy robot arm.

As this system depends on the vision alone, it might not be suitable for more nimble tasks which need contact sensing and tactile dynamics. The performance may also degrade in cases where visual cues are not enough.

Researchers suggest the addition of sensors and tactile materials that can enable the robots to perform different and complex tasks. There is also potential to automate the control of a wider range of robots, together with minimal or no embedded sensors.

Continue Reading

Trending