Connect with us

Published

on

I recall when floating solar PV power plants popped onto the scene at some point in the past decade. On the one hand, the idea was so funny and fanciful that it seemed unrealistic. On the other hand, there appeared to be a lot of benefits to the approach — cooler surfaces (which help with solar panel efficiency, approx. 5–15%), fairly simple installation, no need to compete with other sectors for land use, no concern of shade, large and predictable spaces. The latter hand has indeed been winning out, as the floating solar PV market has been growing larger and larger.

The latest news of a large floating solar PV power project comes out of Singapore, a place that knows the challenges of limited land extremely well. The city-state, home to about 6 million people, launched one of the largest floating solar power plants in the world this week. The project will reportedly cover an area equal to 45 football fields! More specifically, but much harder for me to visualize without the previous comparison, the area covered is 45 hectares (111.2 acres). In total, there are 45,000 solar panels spread across the water. The purpose of this solar power plant floating over some good old H2O? Powering Singapore’s 5 water treatment plants, ironically.

Sembcorp Tengeh Floating Solar Farm. Image courtesy of Sembcorp Industries Ltd. View Terms of Use.

That’s not where the fun of new tech used for good ends. Facility operators will use drones to monitor the PV facility. The solar panels are expected to last 25 years, but I would not be surprised to see them go much longer, especially with effective, smart maintenance.

The floating solar power plant is named Sembcorp Tengeh Floating Solar Farm and is located on the Tengeh Reservoir. The project, built by Sembcorp Floating Solar Singapore, a subsidiary of Sembcorp Industries, offers 60 megawatts (MW) of power capacity. A short video of progress to date was published a couple of days ago at the link above. As cool as the concept of floating solar PV power plants is, and as cool as pictures of a large project are, I don’t think the concept or a few pictures compare to watching a video of a large project (even one that’s just 55 seconds long), so I do recommend clicking that link above and watching the production from The Straits Times/Singapore Press Holdings Limited. (No, we don’t have any association with them or get rewarded if you do. I just think the video is super cool.)

Sembcorp Tengeh Floating Solar Farm. Image courtesy of Sembcorp Industries Ltd. View Terms of Use.

For those concerned about the aquatic life under the innovative power plant, have no fear — extensive environmental analyses were conducted, the project is designed to allow adequate sunlight to go through to the plants and animals underneath, and this type of project has been shown to assimilate well with fish, mermaids, and other sea creatures.

Singapore has been sold on floating solar power. Aside from this large project, the city-state has 4 other floating solar projects under construction. I expect more to be announced in the future as well. Overall, Singapore is aiming to quadruple its solar power use by 2025, and let’s be honest, it’s not flush with deserts or underutilized fields — but it is surrounded by a fair bit of water.

Solar power is growing across the world at a fairly fast clip. However, as with almost all things, there are limitations. There are limitations with resources, trained workers, cash money, and time. Therefore, there is always a question of how best to spend money, where to spend it, and what to do after you’ve spent it. How and where should one — whether a person, company, or city-state — invest in solar power to maximize the result?

Clearly, Singapore has decided that floating solar PV projects make a lot of sense for its needs and resources. For anyone else still weighing options. Or, for that matter, for anyone looking to maximize the output from a solar power project already in the ground, I recommend checking out an upcoming solar webinar we’re hosting. Along with HST and a couple of others, we will be exploring how solar project developers can support a larger pipeline of high-quality utility-scale solar projects with the same amount of time and people. We will also be looking at what can maximize project attraction for potential customers. If this sounds interesting to you, you can register for the webinar (it’s free) here.

Featured image courtesy of Sembcorp Industries Ltd. View Terms of Use.


Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

FERC: Renewables made up 88% of new US power generating capacity to Sept 2025

Published

on

By

FERC: Renewables made up 88% of new US power generating capacity to Sept 2025

Newly published data from the Federal Energy Regulatory Commission (FERC), reviewed by the SUN DAY Campaign, reveal that solar accounted for over 75% of US electrical generating capacity added in the first nine months of 2025. In September alone, solar provided 98% of new capacity, marking 25 consecutive months in which solar has led among all energy sources.

Year-to-date (YTD), solar and wind have each added more new capacity than natural gas has. The mix of all renewables remains on track to exceed 40% of installed capacity within three years; solar alone may be 20%.

Solar was 75% of new generating capacity YTD

In its latest monthly “Energy Infrastructure Update” report (with data through September 30, 2025), FERC says 48 “units” of solar totaling 2,014 megawatts (MW) were placed into service in September, accounting for 98% of all new generating capacity added during the month. Oil provided the balance (40 MW).

The 567 units of utility-scale (>1 MW) solar added during the first nine months of 2025 total 21,257 MW and were 75.3% of the total new capacity placed into service by all sources. Solar capacity added YTD is 6.5% more than that added during the same period a year earlier.

Advertisement – scroll for more content

Solar has now been the largest source of new generating capacity added each month for 25 consecutive months, from September 2023 to September 2025. During that period, total utility-scale solar capacity grew from 91.82 gigawatts (GW) to 158.43 GW. No other energy source added anything close to that amount of new capacity. Wind, for example, expanded by 11.07 GW while natural gas’s net increase was just 4.60 GW.

Between January and September, new wind energy has provided 3,724 MW of capacity additions – an increase of 28.6% compared to the same period last year and more than the new capacity provided by natural gas (3,161 MW). Wind accounted for 13.2% of all new capacity added during the first nine months of 2025.

Renewables were 88% of new capacity added YTD

Wind and solar (plus 4 MW of hydropower and 6 MW of biomass) accounted for 88.5% of all new generating capacity while natural gas added just 11.2% YTD. The balance of net capacity additions came from oil (63 MW) and waste heat (17 MW).

Utility-scale solar’s share of total installed capacity (11.78%) is now virtually tied with that of wind (11.80%). If recent growth rates continue, utility-scale solar capacity should surpass that of wind in FERC’s next “Energy Infrastructure Update” report.

Taken together, wind and solar make up 23.58% of the US’s total available installed utility-scale generating capacity.

Moreover, more than 25% of US solar capacity is in the form of small-scale (e.g., rooftop) systems that are not reflected in FERC’s data. Including that additional solar capacity would bring the share provided by solar and wind to more than a quarter of the US total.

With the inclusion of hydropower (7.59%), biomass (1.05%) and geothermal (0.31%), renewables currently claim a 32.53% share of total US utility-scale generating capacity. If small-scale solar capacity is included, renewables now account for more than one-third of the total US generating capacity.

Solar soon to be No. 2 source of US generating capacity

FERC reports that net “high probability” net additions of solar between October 2025 and September 2028 total 90,614 MW – an amount almost four times the forecast net “high probability” additions for wind (23,093 MW), the second fastest growing resource.

FERC also foresees net growth for hydropower (566 MW) and geothermal (92 MW) but a decrease of 126 MW in biomass capacity.

Meanwhile, natural gas capacity is projected to expand by 6,667 MW, while nuclear power is expected to add just 335 MW. In contrast, coal and oil are projected to contract by 24,011 MW and 1,587 MW, respectively.

Taken together, the net new “high probability” net utility-scale capacity additions by all renewable energy sources over the next three years – the Trump administration’s remaining time in office – would total 114,239 MW. On the other hand, the installed capacity of fossil fuels and nuclear power combined would shrink by 18,596 MW.

Should FERC’s three-year forecast materialize, by mid-fall 2028, utility-scale solar would account for 17.3% of installed U.S. generating capacity, more than any other source besides natural gas (39.9%). Further, the capacity of the mix of all utility-scale renewable energy sources would exceed 38%. The inclusion of small-scale solar, assuming it retains its 25% share of all solar energy, could push solar’s share to over 20% and that of all renewables to over 41%, while the share of natural gas would drop to less than 38%.

In fact, the numbers for renewables could be significantly higher.

FERC notes that “all additions” (net) for utility-scale solar over the next three years could be as high as 232,487 MW, while those for wind could total 65,658 MW. Hydro’s net additions could reach 9,927 MW while geothermal and biomass could increase by 202 MW and 32 MW, respectively. Such growth by renewable sources would swamp that of natural gas (29,859 MW).

“In an effort to deny reality, the Trump Administration has just announced a renaming of the National Renewable Energy Laboratory (NREL) in which it has removed the word ‘renewable’,” noted the SUN DAY Campaign’s executive director Ken Bossong. “However, FERC’s latest data show that no amount of rhetorical manipulation can change the fact that solar, wind, and other renewables continue on the path to eventual domination of the energy market.” 


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Toyota’s new ultra-luxury brand is doomed by its plans to stick to ICE

Published

on

By

Toyota's new ultra-luxury brand is doomed by its plans to stick to ICE

The Century is considered the most luxurious Toyota, and now it’s being spun off into its own high-end brand. Despite the rumors, the ultra-luxury brand won’t be as electric as expected.

Toyota sets new luxury brand up to fail with ICE plans

First introduced in 1967, the Century was launched in celebration of Toyota’s founder, Sakichi Toyoda’s 100th birthday.

The Century has since become a symbol of status and wealth in Japan, often used as a chauffeur car by high-profile company officials.

Toyota previewed the future of the ultra-luxury marquee at the 2025 Japan Mobility Show in October, launching it as a new standalone brand positioned above Lexus.

Advertisement – scroll for more content

The new Century brand is set to rival higher-end automakers like Rolls-Royce and Bentley, but it won’t be as electric as initially expected. Toyota’s powertrain boss, Takashi Uehara, told CarExpert that the luxury brand’s first vehicle will, in fact, have an internal combustion engine.

Although no other details were offered, Uehara confirmed, “Yes, it will have an engine.” As to what kind, that has yet to be decided, Toyota’s powertrain president explained.

Toyota-ultra-luxury-brand-ICE
The Toyota Century Concept (Source: Toyota)

Like the next-gen Lexus supercar and upcoming Toyota GR GT, Uehara said the Century model could include a V8 engine.

The Century has been Toyota’s only vehicle with a V12 engine. In 2018, Toyota dropped the V12 in favor of a V8 hybrid powertrain for its third-generation.

Toyota-ultra-luxury-brand-ICE
A custom-tailored Century on display at the Japan Mobility Show (Source: Toyota)

Toyota’s Century launched its first SUV in 2023, currently on sale in Japan with a V6 plug-in hybrid system alongside the sedan.

Already widely considered the biggest laggard in the shift to fully electric vehicles, Toyota doubled down, developing a series of new internal combustion engines for upcoming models.

Century is one of the five global brands the Japanese auto giant introduced in October, along with Daihatsu, GR Sport, Lexus, and Toyota.

Electrek’s Take

It’s not surprising to see Toyota sticking with ICE for its ultra-luxury Century brand, but it will likely be a costly move.

Chinese auto giants, such as BYD and FAW Group, are quickly expanding into new segments, including high-end models under luxury brands such as Yangwang and Hongqi.

These companies are now expanding into new overseas markets, like Europe and Southeast Asia, where Japanese brands like Toyota have traditionally dominated, to drive growth.

Top luxury brands, including Porsche, BMW, and Mercedes-Benz, are already struggling to keep pace with Chinese EV brands. How does Toyota plan to compete with an “ultra-luxury” brand that still sells outdated ICE vehicles? We will find out more over the coming months and years as new sales data is released.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

SparkCharge and Zipcar bring off‑grid fast charging to East Boston

Published

on

By

SparkCharge and Zipcar bring off‑grid fast charging to East Boston

SparkCharge has partnered with the Massachusetts Clean Energy Center (MassCEC) and Zipcar to launch the Northeast’s first off‑grid, mobile DC fast‑charging hub for shared EVs. The goal is to bring fast, reliable EV charging infrastructure into communities without having to wait for costly or slow grid upgrades.

The hub sits at Zipcar’s maintenance facility in East Boston, an Environmental Justice community. It’s funded through MassCEC’s InnovateMass program and gives onsite mechanics the ability to quickly recharge a rotating fleet of Zipcar EVs before they’re dispatched across Greater Boston. Members and rideshare drivers who rent Zipcars will get steadier access to charged EVs.

“Electrification should never be limited by where the grid is or how long it takes,” SparkCharge founder and CEO Joshua Aviv said. “With this program in East Boston, we’re showing how fleets can deploy at scale, in any community, and deliver clean mobility today.”

At the center of the setup is SparkCharge’s Mobile Battery‑Powered Trailer, which delivers 320 kW of DC fast charging without the delays and big price tags that usually come with fixed infrastructure. The trailer can recharge from Zipcar’s existing onsite power between sessions, topping up its high‑capacity batteries without stressing the local grid. Since it avoids major grid upgrades entirely, the model is designed to deploy quickly and at zero upfront cost for fleets.

Advertisement – scroll for more content

MassCEC says the project shows what community‑first fast charging can look like. “Every resident deserves access to clean, reliable transportation,” said Leslie Nash, MassCEC’s senior director of Technology‑to‑Market. “By partnering with SparkCharge and Zipcar in East Boston, we’re showing how Massachusetts is leading the way in clean transportation innovation.”

The hub also plays into Massachusetts’ push to hit its net‑zero 2050 targets. As shared mobility grows, electrifying fleets will be key to cutting emissions in dense urban corridors. This project introduces a scalable charging option to a part of Boston that is underserved by public charging, helping to keep Zipcar’s EVs reliably on the road.

“For twenty‑five years, Zipcar has been a leader in shared mobility, and we’re proud to take another step toward a more sustainable future,” said Angelo Adams, Zipcar’s president. “Working with SparkCharge and MassCEC allows us to bring fast, reliable EV charging directly to our members and rideshare drivers.”

Zipcar, which is owned by car rental company Avis Budget, announced on December 1 that it was shutting down its UK operations by December 31, 2025. An Avis Budget spokesperson stated that the reason was “to streamline operations, improve returns, and position the company for long-term sustainability and growth,” adding that “all other markets remain unaffected.”

Read more: With a $30M raise, SparkCharge takes EV fleet charging off-grid


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending