Connect with us

Published

on

Every single time NASA shares a picture of space on Twitter or Instagram and explains what it is about, many in the comments section ask how these photographs were taken, whether the colours are real, and, most importantly, they enquire about the cameras that the Hubble Telescope is equipped with. The space agency, in its latest post on Instagram, said it got that question often and, therefore, wanted to break it down for space enthusiasts. To begin with, NASA’s Hubble Space Telescope doesn’t take a snapshot and get the image back in colour, something a mobile phone camera does.

NASA said that Hubble’s camera takes photos over a broad range of wavelengths that come down to Earth in grayscale. This is followed by scientists creating colour images by taking exposures using different colour filters on the telescope, assigning a colour to each filter corresponding to the wavelength, and combining the images.

The space agency said that many of the full-colour photographs shared by Hubble are created after combining three separate exposures — one each taken in red, green, and blue light.

“When mixed, these three colours can recreate almost any colour of light that is visible to human eyes,” NASA said in the post. “That’s how televisions, computer monitors, and video cameras recreate colours to show a picture!”

NASA said that scientists use the closest approximation of the Ultraviolet and Infrared spectrum in the visible light spectrum to represent that information. This, the agency said, is done because we can’t see the colours in the Ultraviolet and Infrared spectrum. It said that the colour in Hubble images is used to highlight interesting features of the celestial object being studied. And then the agency explained it with the help of an example.

Sharing a picture of The Ring Nebula, NASA said that the deep blue colour in the centre, shown in visible light, represents helium, the inner ring, shown in cyan colour, is the glow of hydrogen and oxygen, while the reddish outer ring is from nitrogen and sulphur. So, that’s how the pictures taken by NASA’s Hubble Telescope are created.

Meanwhile, the space agency on Monday shared two photographs of the space on Twitter and wrote: “Hubble’s back!”

One of the pictures shows a three-armed spiral galaxy. NASA added in the caption, “After the Hubble team successfully turned on backup hardware aboard the telescope, the observatory got back to work over the weekend and took these galaxy snapshots.”


Continue Reading

Science

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Published

on

By

Raphael Domjan Soars to 8,224 Meters in SolarStratos

Raphael Domjan, Swiss Aviator, came close to reaching the distance of a world record while flying a solar Stratos plane on Sunday. He departed from Sion Airport in Southwestern Switzerland, reaching an altitude of 8224 meters; it lasted for four hours. Domjan, tagged as an eco-explorer for his aviation focus, and is known for his eco-friendly ambitions. According to him, achieving a height of more than 10,000 meters is still a dream for him to come true soon, hopefully.

Raphael Domjan Sets New SolarStratos Altitude Record

As per TechExplore, In 2010, Andre Borschberg set the record for the highest flight in a solar plane for 9,235 meters as a Swiss pilot flying the Solar Impulse. Domjan won’t just break the record of Borschberg but also intends to fly to the same altitude just like commercial jets. The challenge is as important as Solar Stratos has a boundary on the altitude that it can reach and while relying on solar power only.

The Road to 10,000 Meters: A Green Aviation Dream

Prior to this attempt, Domjan completed a practice flight on July 31, reaching an altitude of 6,589 meters, which was a record for the SolarStratos. Last Friday, he attempted a flight, but the thermals which usually aid in altitude gain were absent. He decided to turn back to conserve battery power for future attempts.

Earlier this week, conditions proved more favorable, leading to a new record altitude for the SolarStratos. As an innovation, the plane has solar panels on its 24.8-meter wings, which power its batteries. During the flight’s solar charging cycle, the plane’s batteries will automatically recharge to full. Domjan and his team are preparing for the next record attempt to make sure it will be a guaranteed success.

Asked about the 10,000 meter target, Domjan believes it is a target which will be achieved only by relentless attempts. For him, it is about the achievement, and an achievement only possible through determination and resilience on the aviations of the future as a green revolution.

Continue Reading

Science

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

Published

on

By

Singapore Researchers Build Maple Seed Drone with Record 26-Minute Flight

A flying robot inspired by the anatomy of a maple seed, samaras, was developed by researchers of the Singapore University of Technology and Design (SUTD). This new monocopter, besides flying much longer than other drones of its size, proves its superiority by running on a single rotor for 26 minutes. This feat is a marked achievement, proving the goals of SUTD’s associate professor Foong Shaohui, who built a 50 minute flying drone for Singapore’s 50 year anniversary. Now, the focus shifts to efficiency in smaller designs.

Nature-Inspired Design Brings Breakthrough in Small Drone Efficiency

According to Techxplore, Nature proves to be the ultimate guide for the SUTD team, as they had previously designed quadcopters with no external help. In the case of maple seeds that spin and gently fall to the ground creating lift, the team built a singular powered wing monocopter. This improvement, while simple, also greatly enhances control, efficiency, effectiveness, and reduces weight.

The collective mix of human creativity with AI enabled tools to further enhance the designs fuel origami’s makes the monocopter a success. AI enabled tools allowed the team to simulate various shapes, angles, and weight before creating the final prototype. As a result, the team had a drone that is 32 grams while retaining the ability to endure more than other drones.

From 10-Year Challenge to Record-Breaking Maple Seed Monocopter

This small monocopter could be extremely beneficial for low-cost, long-duration missions. An example mission could be to transport instruments for measuring meteorological conditions. Taking home the Sustainability Winner award at the 2024 Dyson Awards felt like a decisive victory for monocopter, underscoring its potential for environmental monitoring missions. Now refinement efforts will target a larger payload, longer endurance, and extended range, all without adding weight.

The achievement shows the ten years of steady progress, which started from the SG50 quadcopter and evolved into the SG60 monocopter. It is planned for rollout during the 60th birthday of Singapore festivities. It has been guided by advanced engineering, insights from nature and on-board AI from the team has demonstrated the practical versatility and impressive performance of compact flying robots.

Continue Reading

Science

NASA’s Curiosity Rover Spots Ancient Coral-Like Rock on Mars

Published

on

By

NASA’s Curiosity Rover Spots Ancient Coral-Like Rock on Mars

NASA’s Curiosity Mars rover used the Remote Micro Imager, part of its ChemCam instrument, to view a small, light-colored, wind-eroded rock, shaped like a piece of coral on July 24, 2025, the 4,609th Martian day, or sol, of the mission in Gale Crater. Curiosity has found many rocks like this one, which were formed by ancient water combined with billions of years of sandblasting by the wind. The approximately 1-inch-wide (2.5 centimeters) rock with its intricate branches. indicates that Mars once had a watery environment and could have supported life.

Geological Background

According to NASA, Curiosity has found many features like this that formed “billions of years ago when liquid water still existed on Mars” On early Mars, liquid water carried minerals into tiny fractures in rocks; when the water evaporated, it left behind mineral veins. Later, fast winds laden with sand eroded the surrounding rock, leaving behind intricate, branch-like concretions. This process – common on Earth in arid deserts – can create shapes that mimic biological forms, but are purely mineralogical. Thus, researchers stress the rock’s appearance is pseudofossil like: it looks like coral by chance, but is a geological artifact of past water activity. The find reinforces evidence of early Mars being wetter and possibilities of having microbial life.

Curiosity mission

Curiosity landed on Mars in 2012, touching down in the Gale Crater — a meteor impact crater on the boundary between the Red Planet’s cratered southern highlands and its smooth northern plains. The rover’s mission, led by NASA’s Jet Propulsion Laboratory in California, is to scan the Martian surface for any signs that it was habitable at any point in the distant past.The discovery was made on July 24, 2025 (Sol 4609 of the mission) by Curiosity’s ChemCam remote micro-imager and the image was released by NASA’s Jet Propulsion Laboratory in early August.

Continue Reading

Trending