Connect with us

Published

on

Fewer fields have witnessed advancements on the same scale as robotics. There have been many inspirations — from dogs to humans — for scientists and engineers to design a robot. We have seen these machines walk beside their owners, perform acrobatics, and even assist humans in identifying and lifting work in warehouses. That the robots can navigate through air, water, and land is a well-established fact, but a frontier that remained vastly unexplored for these machines is the ground under our feet. Now, a team of engineers at the University of California, Santa Barbara (UCSB) and Georgia Institute of Technology have designed a snake-like robot that has the ability to navigate underground.

The robot uses a wide range of methods to burrow beneath the earth in soft sand or soil. The study — Controlling subterranean forces enables a fast, steerable, burrowing soft robot — was published last month in Science Robotics.

Following the results, the team concluded a steerable, root-like soft robot that controls subterranean lift and drags forces to burrow faster than previous approaches by over an order of magnitude and does so through real sand. According to Science Robotics, the discovery, the team says, advances the understanding and capabilities of robotic subterranean locomotion.

Nicholas Naclerio, a graduate student researcher in the lab of UC Santa Barbara, said that the biggest challenge when it comes to moving through the ground is the forces involved, something the authors referred to in the abstract of their paper as well. “If you’re trying to move through the ground, you have to push the soil, sand or another medium out of the way,” Naclerio was quoted as saying by The Current, the official news site of UC Santa Barbara.

Many may find it surprising but this robot is not really a high-tech one and is made of airtight, ripstop nylon fabric. Naclerio said that the team drew inspiration directly from plant roots that grow from their tips to extend deep into the soil. So, when the robot extends from its tip, it avoids friction along its sides, and can then take any direction.

Besides plants, Naclerio said that the team also took inspiration from the southern sand octopus, which expels a jet of water to help burrow into the seafloor. Our robot blows air from its tip to fluidise the sand near its tip, which reduces the force it needs to burrow into the ground, he said. And a sandfish lizard, which uses its wedge-shaped head to burrow into sand, was the inspiration behind it.


Continue Reading

Science

Neuralink Expected to Begin Human Trials in Six Months, Elon Musk Says

Published

on

By

Neuralink Expected to Begin Human Trials in Six Months, Elon Musk Says

Elon Musk said on Wednesday a wireless device developed by his brain chip company Neuralink is expected to begin human clinical trials in six months.

The company is developing brain chip interfaces that it says could enable disabled patients to move and communicate again. Based in the San Francisco Bay Area and Austin, Texas, Neuralink has in recent years been conducting tests on animals as it seeks US regulatory approval to begin clinical trials in people.

“We want to be extremely careful and certain that it will work well before putting a device into a human but we’ve submitted I think most of our paperwork to the FDA and probably in about six months we should be able to upload Neuralink in a human,” Musk said during a much-awaited public update on the device.

The event was originally planned for October 31 but Musk postponed it just days before without giving a reason.

Neuralink’s last public presentation, more than a year ago, involved a monkey with a brain chip that played a computer game by thinking alone.

Musk is known for lofty goals such as colonizing Mars and saving humanity. His ambitions for Neuralink, which he launched in 2016, are of the same grand scale. He wants to develop a chip that would allow the brain to control complex electronic devices and eventually allow people with paralysis to regain motor function and treat brain diseases such as Parkinson’s, dementia and Alzheimer’s. He also talks about melding the brain with artificial intelligence.

Neuralink, however, is running behind schedule. Musk said in a 2019 presentation he was aiming to receive regulatory approval by the end of 2020. He then said at a conference in late 2021 that he hoped to start human trials this year.

Neuralink has repeatedly missed internal deadlines to gain US Food and Drug Administration (FDA) approval to start human trials, current and former employees have said. Musk approached competitor Synchron earlier this year about a potential investment after he expressed frustration to Neuralink employees about their slow progress, Reuters reported in August.

Synchron crossed a major milestone in July by implanting its device in a patient in the United States for the first time. It received US regulatory clearance for human trials in 2021 and has completed studies in four people in Australia.

© Thomson Reuters 2022


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

NASA’s Orion Spacecraft Enters Lunar Orbit a Week After Artemis I Launch

Published

on

By

NASA's Orion Spacecraft Enters Lunar Orbit a Week After Artemis I Launch

NASA’s Orion spacecraft was placed in lunar orbit Friday, officials said, as the much-delayed Moon mission proceeded successfully.

A little over a week after the spacecraft blasted off from Florida bound for the Moon, flight controllers “successfully performed a burn to insert Orion into a distant retrograde orbit,” the US space agency said on its website.

The spacecraft is to take astronauts to the Moon in the coming years — the first to set foot on its surface since the last Apollo mission in 1972.

This first test flight, without a crew on board, aims to ensure that the vehicle is safe.

“The orbit is distant in that Orion will fly about 40,000 miles above the Moon,” NASA said.

While in lunar orbit, flight controllers will monitor key systems and perform checkouts while in the environment of deep space, the agency said.

It will take Orion about a week to complete half an orbit around the Moon. It will then exit the orbit for the return journey home, according to NASA.

On Saturday, the ship is expected to go up to 40,000 miles beyond the Moon, a record for a habitable capsule. The current record is held by the Apollo 13 spacecraft at 248,655 miles (400,171 km) from Earth.

It will then begin the journey back to Earth, with a landing in the Pacific Ocean scheduled for December 11, after just over 25 days of flight.

The success of this mission will determine the future of the Artemis 2 mission, which will take astronauts around the Moon without landing, then Artemis 3, which will finally mark the return of humans to the lunar surface.

Those missions are scheduled to take place in 2024 and 2025, respectively.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

ISRO’s RH200 Sounding Rocket Registers 200th Consecutive Successful Launch

Published

on

By

ISRO's RH200 Sounding Rocket Registers 200th Consecutive Successful Launch

ISRO on Wednesday announced that RH200, the versatile sounding rocket of the Indian space agency, has registered its 200th consecutive successful launch from the shores of Thumba, Thiruvananthapuram. The Indian Space Research Organisation (ISRO) has termed it a “historic moment”. It was witnessed by former President Ram Nath Kovind and ISRO chairman S Somanath, among others.

The successful flight of RH200 took off from the Thumba Equatorial Rocket Launching Station (TERLS).

“Indian sounding rockets are used as privileged tools for the scientific community for carrying out experiments on meteorology, astronomy and similar branches of space physics,” an ISRO statement said.

Campaigns such as Equatorial ElectroJet (EEJ), Leonid Meteor Shower (LMS), Indian Middle Atmosphere Programme (IMAP), Monsoon Experiment (MONEX), Middle Atmosphere Dynamics (MIDAS), and Sooryagrahan-2010 have been conducted using the sounding rocket platform for scientific exploration of the Earth’s atmosphere, it said.

The Rohini Sounding Rocket (RSR) series have been the forerunners for ISRO’s heavier and more complex launch vehicles, with a continued usage even today for atmospheric and meteorological studies, the national space agency headquartered here said.

“The 200th consecutive successful flight stands testimony to the commitment of Indian rocket scientists towards unmatched reliability demonstrated over the years,” it said.

Meanwhile, ISRO is all set to launch PSLV-C54/ EOS-06 mission with Oceansat-3 and eight nano satellites, including one from Bhutan, from the Sriharikota spaceport on November 26. The launch is scheduled at 11.56am on Saturday, the national space agency said on Sunday.

Last week, ISRO announced that the payload capability of India’s heaviest LVM3 rocket has been enhanced by up to 450kg with a successful engine test. According to the Indian Space Research Organisation, the CE20 cryogenic engine indigenously developed for Launch Vehicle Mark 3 (LVM3) was subjected to a successful hot test at an uprated thrust level of 21.8 tonnes for the first time on November 9, according to the country’s national space agency.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Trending