Connect with us

Published

on

High winds, a beaming sun, a remote landscape — the National Renewable Energy Laboratory’s (NREL’s) Flatirons Campus might be a familiar environment to military servicemembers. Here at “Fort Renewable,” down a dirt road from the main research campus, military Quonset huts are dispersed among energy assets like solar photovoltaics and battery storage.

Compared to a real military base, the Fort Renewable setup is not so much forward-operating as forward-thinking, with its own critical mission: to design high-renewable systems for secure applications. With unique cyber and physical capabilities, NREL’s microgrid research platform is the scene of large-scale grid demonstrations that are helping the military, microgrid, and energy storage industries transition past technical barriers toward extreme renewable integration.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

A Competition To Create Quality Microgrids

Microgrids are nothing new to the military, and especially nothing new for NREL–Department of Defense (DOD) collaborations. But as new threats emerge on energy systems — generally cyber and environmental — the DOD is now looking to bolster its backup power with battery storage, in place of a current preference for diesel generators.

“We’ve had military microgrids for 20 years now,” said Brian Miller, a senior NREL researcher and microgrid research lead. “But we didn’t have batteries back then, and very little solar.”

Relying on diesel generators alone could put microgrids at risk. If a true disaster scenario takes down the grid for an extended period, the military’s old diesel generators would not survive multiweek outages.

“Renewables and battery storage have the potential to last longer on fuel supplies and provide important energy diversity,” Miller said.

To discover the best microgrid-storage implementations across its diverse sites, the DOD arranged a unique program that is half competition, half technology accelerator. Under the program, the early-stage companies have been invited to validate their microgrid solutions on progressively more realistic grid systems, and progressively more challenging platforms. This way, companies can quickly gain field experience, DOD can confidently invest in its own microgrid improvements, and the experimental results will be widely available as stakeholder resources.

The project is facilitated through the DOD Environmental Security Technology Certification Program (ESTCP) and therefore inherits the program’s goal of assisting early-stage commercial products past the difficulties of breaking into the market. Each participating company is matched with an industry principal investigator, forming teams of two that apply the commercial concepts to real microgrid operations.

The validations got underway in 2020. While each of the participating teams are ultimately striving to prove their technologies at an actual DOD base, they first must advance through two lower-fidelity trials. These initial validations are taking place at NREL, where energy systems can be emulated to exact similarity under most any scenario.

Building Military Microgrids at a Replica Base

In preparation for the program, NREL refashioned its world-class power systems research platform ARIES into a distributed military microgrid — off-grid as a DOD base might be, but with high-performance experimental assets like weather stations and six-strand fiber optic communication links. At NREL’s Fort Renewable, DOD and participating companies have now been able to truly validate and derisk commercial microgrid systems.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Phase 1 of the program brought seven teams to NREL, where their microgrid-storage concepts were plugged into virtual systems and analyzed with simulated operations. This first phase validated teams’ technologies on a model military base, testing whether the devices could respond with a baseline level of performance, and filtered the number of participating teams down to four. Phase 1 results are available on the ESTCP website.

Phase 2 of the project raised the bar higher: Teams have submitted their technologies to more rigorous validations on a near-exact approximation of DOD’s Naval Air Station Patuxent River (NAS Patuxent River) — a 34-MW Air Force base in Maryland — replicated right inside NREL.

“Our platform is built such that users can prove their designs for islandable microgrids that are able to provide power in a long-duration emergency at a reasonable cost,” said Miller, who led the development of the military microgrid research platform. “Doing a study is one thing, but you can’t pencil whip whether a power hardware is successful. That’s why these companies come to NREL. If they can leverage our capabilities, it’s huge.”

Miller, himself once a major in the U.S. Air Force, has a career’s worth of energy resilience experience drawn from service overseas and across the United States, and used his background to build out the replica research environment.

The research platform involves about 250 kW of hardware, which is variously swapped with teams’ technologies — everything from microgrid switches and controllers to batteries. The teams rely on NREL for the rest of the microgrid environment: power and grid emulators, SCADA networks, switchgear, load banks, renewable resources, and a replica of the NAS Patuxent River grid.

And that covers just the hardware. The full platform crosses nearly every lab space in NREL’s Energy Systems Integration Facility and connects out to the Flatirons assets miles away. An integrated Cyber-Energy Emulation Platform (CEEP) digitally emulates communications and controls for the microgrids, while a vast sensor network simultaneously collects power data at all points throughout the microgrid and visualizes interactive metrics in real time. All told, the military microgrid research platform is as close to real as the teams will experience until Phase 3.

Microgrid Lessons for a Larger Grid

Each team has a different approach to microgrid-storage solutions: One is using redox-flow batteries, others bring their own microgrid controllers, and another is validating lithium iron phosphate battery storage. As of Phase 2, the participating teams are led by Ameresco, the Energy Power Research Institute, Raytheon, and SRI and Arizona State University. Cummins, which helped NREL build out the military microgrid research platform and contributed its microgrid controller to the design, has also thrown its hat into the program. NREL could not resist entering the action as well.

The teams have an important stake in the program — successful validations could carry their products from relative obscurity to energy markets anywhere, with the bonus of being proven in highly demanding applications. But the larger energy industry stands to gain something more: The demonstrations are establishing first-ever data around what works for critical applications of energy storage in microgrids.

“This project is about learning how critical loads can survive disaster and outage scenarios,” said Martha Symko-Davies, laboratory program manager of the ESIF. “We’re not validating microgrids for the military only; we want to do this for the whole country. Future campuses and microgrid systems will look to this project for examples, and to NREL for microgrid research capabilities that exist nowhere else.”

In this perspective, project teams endure the hardest tests so that future microgrids can better survive worst-case scenarios. NREL validations force difficult decisions that a critical microgrid could encounter, like choosing between multiple critical loads. For participating teams, their early-stage concepts that have scarcely seen commercial applications are up against disasters that any system would hope to never see, but nevertheless must prepare for.

“Some universities maintain billion-dollar inventories of temperature-controlled cell cultures, for example. This is a critical load compared to other buildings on campus, and a functional microgrid should be able to allocate power accordingly,” Miller said.

NREL is advancing distributed grid and microgrid control and optimization solutions through research such as Autonomous Energy Systems and products like OptGrid.

Beyond specific technologies, this ESTCP evaluation program is creating important knowledge for microgrids generally. Networked microgrids are an upcoming approach for accommodating distributed energy while enhancing resilience against future threats. Likewise, the Autonomous Energy Systems portfolio of work is developing microgrid controls for autonomous configuration and operation of connected microgrid systems. In each topic, the ESTCP program is showing what critical microgrid operations look like — the real results of applying renewable energy assets to resilience events.

As the participants move to Phase 3 of the program — installation at one of seven DOD microgrid sites — industry moves one step closer to resilient renewable microgrids. For all the expectations that microgrids and renewables could reliably support critical loads, a new class of commercial players is arriving with the first data to show exactly how.

Article courtesy of NREL.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Isuzu NRR-EV gets to work as first electric trucks reach customers

Published

on

By

Isuzu NRR-EV gets to work as first electric trucks reach customers

Isuzu is giving Red Bull electrified wings – the iconic drinks company is officially the first to put the production version of its new-for-2025 Isuzu NRR-EV medium duty electric box truck to work in North America.

Deployed by Red Bull North America, these first-ever customer Isuzu NRR-EV medium duty trucks are busy delivering cans of Red Bull products throughout Southern California with zero tailpipe emissions, marking the first time the best-selling low-cab/cabover box truck brand in the US can make such a claim.

“Today marks a major milestone for the industry and for us. Watching the NRR-EV evolve from a concept to a viable operating product is a big deal,” explains Shaun Skinner, President of Isuzu Commercial Truck of America. “Our teams and our clients have put so much time and effort into making this happen, and it speaks to our teamwork and dedication to more sustainable transportation solutions. It is no longer just a plan, we have zero-emission trucks serving our customers’ needs!”

The NRR-EV is available with a number of different battery configurations, ranging from three 20 kWh battery packs (60 kWh total) up to nine 20 kWh battery packs, with five and seven pack options in between. The nine-pack version is good for up to 235 miles of range with a 19,500 lb. GVWR. The batteries, regardless of configuration, send power to a 150 kW (200 hp) electric motor with 380 lb-ft. of torque available at 0 rpm.

For “Red Bull” duty, the Isuzu trucks ship with a 100 kWh total battery capacity, and are fitted a lightweight, all-aluminum 6-bay beverage body, the vehicle’s design maintains its cargo capacity. The NRR-EV’s 19,500 lb. GVWR (Class 5) chassis, combined with the lightweight body and “big enough” battery spec provides Red Bull’s delivery drivers a hefty, 9,000 lb. payload.

Isuzu began assembling NRR-EV trucks at its Charlotte, Michigan assembly plant in August 2024. Customer deliveries are set to begin nationally in Q1 of 2025.

Electrek’s Take

ISUZU ANNOUNCES START OF PRODUCTION FOR ITS ALL-NEW NRR-EV!
Isuzu NRR-EV production line; via Isuzu.

Isuzu’s N-series trucks are everywhere – and for good reason. They’re dependable, they’re affordable, and they have a nationwide network of GM dealers supporting them. I am a huge fan of these trucks, and can’t wait to sample the electric version from behind the wheel.

SOURCE | IMAGES: Isuzu.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai is preparing to launch its first electric minivan: Here’s what we know so far

Published

on

By

Hyundai is preparing to launch its first electric minivan: Here's what we know so far

Hyundai is gearing up to launch its first all-electric minivan. Production is set to begin next year, and the EV minivan is expected to play a key role in its global expansion. Here’s what to expect.

Hyundai will launch its first EV minivan in 2025

The Staria is Hyundai’s successor to the Starex, its multi-purpose vehicle (MPV), launched in 2021. Like its replacement, the Staria is offered in a minivan, minibus, van, pickup, and several other configurations like limousines and ambulances.

Although the Staria was launched with only diesel and gas-powered powertrain options, Hyundai added its first hybrid model in February.

Hyundai will introduce the Staria Electric, its first electric minivan, next year. In March, Hyundai unveiled its new ST1 electric business van, which is based on the Staria. However, the minivan will get its own EV model in 2025. The ST1 is Hyundai’s first commercial EV. It’s available in refrigerated van and basic chassis cab options.

Hyundai is already building gas-powered and hybrid Staria models at its Ulsan plant in Korea, but it is preparing to begin producing the EV version.

Hyundai-first-EV-minivan
Hyundai Staria Hybrid minivan (Source: Hyundai)

According to the Korean media outlet Newsis, sources close to the matter on Friday said Hyundai will begin converting a production line (Line 1) at its Ulsan Plant 4 for Staria Electric around January 25, 2024.

The expansion is part of Hyundai’s broader plan to introduce 21 electric vehicles by 2030, accounting for over 2 million in sales.

Hyundai-first-EV-minivan
Hyundai Staria hybrid (Source: Hyundai)

A report from The Korean Economic Daily in June claimed Hyundai would expand Staria EV production into Europe starting in the first half of 2026. European-made models will be sold domestically and overseas, like in Australia and Thailand. Hyundai aims to sell 15,000 to 20,000 of the EV model annually.

The Staria Electric will be powered by Hyundai’s fourth-generation 84 kWh EV batteries and will have over 10% more capacity than the ST1.

Hyundai-first-EV-minivan-interior
Hyundai Staria hybrid interior (Source: Hyundai)

Hyundai sold 37,769 Starias through the first 11 months of 2024. Last year, Hyundai Staria sales reached 39,780, including domestic and export sales. By the end of the year, Staria sales are expected to exceed 40,000 for the first time.

Hyundai’s sister company also has big plans to expand its commercial business with a new lineup of EVs based on its PBV (Platform Beyond Vehicle). Its first electric van, the PV5, was spotted earlier this year as a potential Volkswagen ID.Buzz challenger.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Schneider electric semi truck fleet hits 6 million miles driven

Published

on

By

Schneider electric semi truck fleet hits 6 million miles driven

Just a year after it hit the 1 million electric mile mark, Schneider National ($SNDR) and its unmistakable orange semi trucks have thrown down the gauntlet – adding more than 5 million miles to its BEV tally and crossing the 6 million electric mile mark!

The company says this latest all-electric milestone means Schneider has cut more than 20 million pounds of harmful carbon emissions. A total it says is equivalent to removing more than 2,100 gas-powered passenger cars from the road.

“Reaching 6 million zero-emission miles is a testament to our steadfast dedication to sustainability and innovation,” said Schneider President and CEO, Mark Rourke. “Leading the way in adopting electric vehicle technology not only benefits the environment but also serves as an example of the broad service capabilities and flexibility we can offer to customers.”

Schneider operates one of the largest fleets of Freightliner eCascadia electric semi trucks in the country, with fully 92 of the BEVs deployed (so far). The trucks have been operating in and around the ports of Southern California, where they have significantly reduced emissions and contributed to cleaner air quality while reliably transporting freight and saving SNDR money.

“Schneider is a great example of the kind of forward-thinking entrepreneurship our industry needs,” says David Carson, Senior Vice President, Sales and Marketing at DTNA. “They’ve achieved over 6 million zero emission miles, which is a reminder for us all to keep working on overcoming challenges together on the path to zero emissions. At DTNA, we’re committed to the shift to zero emissions, alongside pioneers like Schneider, who are showing us what’s possible.”

Fifty of Schneider’ 92 eCascadias were funded by JETSI – a California-wide initiative working to reduce greenhouse gas emissions. Of the remaining 42 five are jointly funded by the EPA’s FY18 Targeted Airshed Grant, seven are funded by the Volkswagen Environmental Mitigation Trust, and 30 are funded by California’s HVIP incentive program.

Electrek’s Take

Schneider’s BEV fleet hits 6 million miles
Image via Schneider.

Schneider is among the many global fleets that are proving the reliability and efficacy of battery-electric semi trucks every day, racking up millions of miles faster than many of the nay-sayers thought would be possible. The only real question facing the world of electric trucking now is whether the legacy brands like Freightliner and Volvo have established an insurmountable lead over Tesla.

SOURCE | IMAGES: Schneider, via BusinessWire.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending