Connect with us

Published

on

High winds, a beaming sun, a remote landscape — the National Renewable Energy Laboratory’s (NREL’s) Flatirons Campus might be a familiar environment to military servicemembers. Here at “Fort Renewable,” down a dirt road from the main research campus, military Quonset huts are dispersed among energy assets like solar photovoltaics and battery storage.

Compared to a real military base, the Fort Renewable setup is not so much forward-operating as forward-thinking, with its own critical mission: to design high-renewable systems for secure applications. With unique cyber and physical capabilities, NREL’s microgrid research platform is the scene of large-scale grid demonstrations that are helping the military, microgrid, and energy storage industries transition past technical barriers toward extreme renewable integration.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

A Competition To Create Quality Microgrids

Microgrids are nothing new to the military, and especially nothing new for NREL–Department of Defense (DOD) collaborations. But as new threats emerge on energy systems — generally cyber and environmental — the DOD is now looking to bolster its backup power with battery storage, in place of a current preference for diesel generators.

“We’ve had military microgrids for 20 years now,” said Brian Miller, a senior NREL researcher and microgrid research lead. “But we didn’t have batteries back then, and very little solar.”

Relying on diesel generators alone could put microgrids at risk. If a true disaster scenario takes down the grid for an extended period, the military’s old diesel generators would not survive multiweek outages.

“Renewables and battery storage have the potential to last longer on fuel supplies and provide important energy diversity,” Miller said.

To discover the best microgrid-storage implementations across its diverse sites, the DOD arranged a unique program that is half competition, half technology accelerator. Under the program, the early-stage companies have been invited to validate their microgrid solutions on progressively more realistic grid systems, and progressively more challenging platforms. This way, companies can quickly gain field experience, DOD can confidently invest in its own microgrid improvements, and the experimental results will be widely available as stakeholder resources.

The project is facilitated through the DOD Environmental Security Technology Certification Program (ESTCP) and therefore inherits the program’s goal of assisting early-stage commercial products past the difficulties of breaking into the market. Each participating company is matched with an industry principal investigator, forming teams of two that apply the commercial concepts to real microgrid operations.

The validations got underway in 2020. While each of the participating teams are ultimately striving to prove their technologies at an actual DOD base, they first must advance through two lower-fidelity trials. These initial validations are taking place at NREL, where energy systems can be emulated to exact similarity under most any scenario.

Building Military Microgrids at a Replica Base

In preparation for the program, NREL refashioned its world-class power systems research platform ARIES into a distributed military microgrid — off-grid as a DOD base might be, but with high-performance experimental assets like weather stations and six-strand fiber optic communication links. At NREL’s Fort Renewable, DOD and participating companies have now been able to truly validate and derisk commercial microgrid systems.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Phase 1 of the program brought seven teams to NREL, where their microgrid-storage concepts were plugged into virtual systems and analyzed with simulated operations. This first phase validated teams’ technologies on a model military base, testing whether the devices could respond with a baseline level of performance, and filtered the number of participating teams down to four. Phase 1 results are available on the ESTCP website.

Phase 2 of the project raised the bar higher: Teams have submitted their technologies to more rigorous validations on a near-exact approximation of DOD’s Naval Air Station Patuxent River (NAS Patuxent River) — a 34-MW Air Force base in Maryland — replicated right inside NREL.

“Our platform is built such that users can prove their designs for islandable microgrids that are able to provide power in a long-duration emergency at a reasonable cost,” said Miller, who led the development of the military microgrid research platform. “Doing a study is one thing, but you can’t pencil whip whether a power hardware is successful. That’s why these companies come to NREL. If they can leverage our capabilities, it’s huge.”

Miller, himself once a major in the U.S. Air Force, has a career’s worth of energy resilience experience drawn from service overseas and across the United States, and used his background to build out the replica research environment.

The research platform involves about 250 kW of hardware, which is variously swapped with teams’ technologies — everything from microgrid switches and controllers to batteries. The teams rely on NREL for the rest of the microgrid environment: power and grid emulators, SCADA networks, switchgear, load banks, renewable resources, and a replica of the NAS Patuxent River grid.

And that covers just the hardware. The full platform crosses nearly every lab space in NREL’s Energy Systems Integration Facility and connects out to the Flatirons assets miles away. An integrated Cyber-Energy Emulation Platform (CEEP) digitally emulates communications and controls for the microgrids, while a vast sensor network simultaneously collects power data at all points throughout the microgrid and visualizes interactive metrics in real time. All told, the military microgrid research platform is as close to real as the teams will experience until Phase 3.

Microgrid Lessons for a Larger Grid

Each team has a different approach to microgrid-storage solutions: One is using redox-flow batteries, others bring their own microgrid controllers, and another is validating lithium iron phosphate battery storage. As of Phase 2, the participating teams are led by Ameresco, the Energy Power Research Institute, Raytheon, and SRI and Arizona State University. Cummins, which helped NREL build out the military microgrid research platform and contributed its microgrid controller to the design, has also thrown its hat into the program. NREL could not resist entering the action as well.

The teams have an important stake in the program — successful validations could carry their products from relative obscurity to energy markets anywhere, with the bonus of being proven in highly demanding applications. But the larger energy industry stands to gain something more: The demonstrations are establishing first-ever data around what works for critical applications of energy storage in microgrids.

“This project is about learning how critical loads can survive disaster and outage scenarios,” said Martha Symko-Davies, laboratory program manager of the ESIF. “We’re not validating microgrids for the military only; we want to do this for the whole country. Future campuses and microgrid systems will look to this project for examples, and to NREL for microgrid research capabilities that exist nowhere else.”

In this perspective, project teams endure the hardest tests so that future microgrids can better survive worst-case scenarios. NREL validations force difficult decisions that a critical microgrid could encounter, like choosing between multiple critical loads. For participating teams, their early-stage concepts that have scarcely seen commercial applications are up against disasters that any system would hope to never see, but nevertheless must prepare for.

“Some universities maintain billion-dollar inventories of temperature-controlled cell cultures, for example. This is a critical load compared to other buildings on campus, and a functional microgrid should be able to allocate power accordingly,” Miller said.

NREL is advancing distributed grid and microgrid control and optimization solutions through research such as Autonomous Energy Systems and products like OptGrid.

Beyond specific technologies, this ESTCP evaluation program is creating important knowledge for microgrids generally. Networked microgrids are an upcoming approach for accommodating distributed energy while enhancing resilience against future threats. Likewise, the Autonomous Energy Systems portfolio of work is developing microgrid controls for autonomous configuration and operation of connected microgrid systems. In each topic, the ESTCP program is showing what critical microgrid operations look like — the real results of applying renewable energy assets to resilience events.

As the participants move to Phase 3 of the program — installation at one of seven DOD microgrid sites — industry moves one step closer to resilient renewable microgrids. For all the expectations that microgrids and renewables could reliably support critical loads, a new class of commercial players is arriving with the first data to show exactly how.

Article courtesy of NREL.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Ford beat every supercar at Goodwood with a truck because EVs are just better

Published

on

By

Ford beat every supercar at Goodwood with a truck because EVs are just better

The Goodwood Festival of Speed happened this weekend, and Ford’s electric SuperTruck managed to beat every other vehicle, gas or electric, to the top of the hill.

The Goodwood Festival of Speed is a yearly event on the grounds of Goodwood House, a historic estate in West Sussex, England. The event started in 1993, and has become one of the largest motorsports festivals in the world.

Many companies attend Goodwood to debut new models, and enthusiasts or race teams will show off rare or customized vehicles or race unique cars.

One of the central features of the event is the Goodwood hillclimb, a short one-way race up a small hill on the property. The track is only 1.17mi/1.89km long, with a 304ft/92.7m uphill climb. It’s not a particularly taxing event – merely a fun way to show off some classic or unique racing vehicles.

Advertisement – scroll for more content

As is often the case, companies brought out several interesting EVs to the event, including Honda’s Super EV concept, the recently-unveiled Hyundai Ioniq 6N, and the upcoming Porsche Cayenne EV, still in camouflage after recently setting an SUV record at another UK hillclimb.

Many of these cars came just to show off, to do a demonstration run up the hill and join the company of the world’s most exotic hypercars.

But some cars show up for the glory, and join “the shootout,” the sprint up the hill for the best time.

And Ford didn’t come to show off, it came to win. And in order to win, it brought…. a truck.

The F-150 “SuperTruck” / Source: Ford

Ford’s SuperTruck is a one-off, 1,400+ horsepower prototype electric vehicle, supposedly based on the F-150 Lightning, but in fact bearing almost no similarity or even resemblance.

It’s been festooned with aerodynamic elements all about, lowered, equipped with race tires, and power output has been boosted to the aforementioned 1,400hp. It was driven by Romain Dumas, who Ford have been using since 2022 to drive their electric prototypes.

For the purposes of a hillclimb, perhaps the most important aspect is the Ford’s electric drive. Hillclimbs are a popular form of racing in Britain, and often consist of a short sprint up a small hill, showcasing acceleration and nimbleness more than anything.

Electric cars do well in this sort of racing due to their instant low-end torque, being able to jump off the line faster than the gas competition. They also tend to have plenty of torque, which helps with carrying them up the hills involved.

EVs do well on longer hillclimbs too, because as races reach higher and higher altitudes, gas cars suffer from reduced power due to less oxygen being available for combustion. EVs don’t suffer from this, so they tend to do well at, say, Pike’s Peak hillclimb – which, incidentally, Ford also brought its SuperTruck to, and also beat everybody at.

This year was not the first time Ford has brought a ridiculous electric chonker to Goodwood. Last year, it brought the SuperVan, which has a similar powertrain to the SuperTruck, and also beat everybody.

The SuperVan’s main competition last year was Subaru’s 670hp “Project Midnight” WRX, piloted by Scott Speed, who Dumas handily defeated by over two seconds, 43.98 to 46.07. And this year, the SuperTruck’s main competition was… the same Subaru, piloted by Speed, who Dumas handily defeated by just under two seconds, 43.23 to 45.03.

Ford did not, however, set an all-time record with the SuperTruck, in fact coming in fifth on the list of fastest runs ever. In front of it are two gas cars and two electric – the gas-powered Gould GR51, a tiny open-wheel race car, with a 42.90; an F1 car driven by Nick Heidfeld that set a 41.6 in 1999; the electric VW ID.R, also piloted by Dumas with a 39.90 (which broke Heidfeld’s 20-year record); and the all-time record holder the electric McMurtry Spierling “fan car,” with a mind-blowing 39.08 in 2019.

You’ll notice something similar about all of these – they’re all small racecars that are actually built for speed, whereas the truck is… a big truck. And yet, Ford still managed to beat every single challenger this year, with its big honker of an EV, because EVs are just better.

Watch the run in full below, starting at 9:34. Blink and you’ll miss it.

And now, if Ford continues its pattern, we’re looking forward to seeing the Super Mustang Mach-E at Goodwood next year, which did well this year at a tough Pike’s Peak, getting first in its class and second overall, likely due to inclement conditions that limited running to the lower portion of the course, limiting the EV’s high-altitude advantages.

Given the Super Mustang is a real racecar, and not a chonky truck, it might even give VW’s ID.R time a run for its money (but, frankly, really has no shot at the overall record, because the Spierling’s “fans” give it an absurdly unbeatable amount of downforce).


Charge your electric vehicle at home using rooftop solar panels. Find a reliable and competitively priced solar installer near you on EnergySage, for free. They have pre-vetted installers competing for your business, ensuring high-quality solutions and 20-30% savings. It’s free, with no sales calls until you choose an installer. Compare personalized solar quotes online and receive guidance from unbiased Energy Advisers. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

GM gears up to build low-cost LFP EV batteries in Tennessee after announcing new upgrades

Published

on

By

GM gears up to build low-cost LFP EV batteries in Tennessee after announcing new upgrades

GM is preparing to begin converting production lines at its battery plant in Tennessee later this year for low-cost LFP EV batteries. GM’s joint venture, Ultium Cells, announced additional upgrades at the facility on Monday as it prepares for a new era.

GM will build low-cost LFP EV batteries in the US

After beating out Ford and Hyundai last year to become America’s second-best EV seller, GM is widening its lead in 2025.

Ultium Cells, GM’s joint venture with LG Energy Solution, announced plans to upgrade its Tennessee battery plant on Monday as it prepares to introduce lower-cost lithium-iron-phosphate (LFP) battery cells.

The upgrades build on the $2.3 billion investment announced in April 2021 to convert the facility into a key EV and battery hub. The company initially said the Tennessee plant was “at the heart of GM’s EV strategy,” but that was also when GM was still committed to an all-electric future.

Advertisement – scroll for more content

GM will begin converting production lines to accommodate the lower-cost LFP batteries at the facility later this year. By late 2027, the company expects to start commercial production.

GM-low-cost-EV-batteries
Ultium Cells Spring Hill, Tennessee plant (Source: Ultium Cells)

With LFP batteries, GM said it’s “targeting significant battery pack cost savings compared to today’s high-nickel battery pack while increasing consumer EV choice.”

The Spring Hill, Tennessee, plant currently employs around 1,300 employees. With the ability to produce multiple chemistries, GM said the facility will “guide the next phase of” its battery strategy.

GM-low-cost-LFP-EV-batteries
2025 Chevy Equinox EV LT (Source: GM)

After choosing Spring Hill for its LFP batteries, the next step, according to GM, is finding a home for lithium manganese-rich batteries. GM recently announced plans to become the first company to produce LMR prismatic battery cells at commercial scale.

GM-low-cost-EV-batteries
GM plans to build a “next-gen affordable EV) in Kansas (Source: GM)

Meanwhile, GM’s Warren, Ohio, plant will continue producing NCM batteries, which it says have helped it unlock over 300 miles of range.

Electrek’s Take

GM’s electric vehicle sales more than doubled in the second quarter, led by the hot-selling Chevy Equinox EV. The company sold nearly 46,300 EVs in Q2, up 11% from last year.

Chevy is currently the fastest-growing EV brand in the US, while Cadillac claims to have already achieved “EV leader” status in the luxury segment this year. However, that does not include Tesla.

Even GMC is building momentum with the new Sierra EV, seeing strong initial demand, and Hummer EV sales are picking up.

With new, lower-cost batteries on the way, GM aims to continue narrowing the gap with Tesla. GM offers 13 electric vehicles, covering nearly every segment of the market. It already calls the Chevy Equinox EV “America’s most affordable +315 range EV,” but GM has even lower-priced models on the way, including the next-gen Chevy Bolt EV.

Ready to test drive one for yourself? You can use our links below to find Chevy, Cadillac, and GMC EVs in your area.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Elon Musk says Tesla is going to have ‘the most epic demo ever’, but we heard that before

Published

on

By

Elon Musk says Tesla is going to have 'the most epic demo ever', but we heard that before

Elon Musk is teasing Tesla doing “the most epic demo ever”, but we heard him claim that before and nothing came of it.

On X last night, Tesla CEO Elon Musk said that he was shown something at the Tesla Design Studio and that the company will hold the ” most epic demo ever by the end of the year”:

Just left the Tesla Design Studio. Most epic demo ever by the end of the year. Ever.

I used to get excited about Musk making statements like that, but I was burned one too many times.

In 2016, Musk said this:

Advertisement – scroll for more content

Our goal is, and I feel pretty good about this goal, that we’ll be able to do a demonstration drive of full autonomy all the way from LA to New York … by the end of next year.

The end of 2017 came and went without this demonstration and now in 2025, Tesla can’t do it either.

However, since Musk referenced being at Tesla’s Design Studio, where it mostly works on car designs and advanced features, people are speculating that it’s something else.

A possibility is the next-gen Tesla Roadster, as Musk has made similar comments about it in the past, but they were again about demonstrations that never happened.

Shortly after the unveiling of the next-gen Roadster in 2017, Musk talked about adding cold air thruster to the supercar to allow it to have unprecedented racing performance and even possibly hover over the ground.

In 2019, Musk told me that Tesla aimed to do a demonstration of that by the end of 2020:

5 years later, it never happened, and the Roadster was initially supposed to come to market in 2020. It has never launched.

In 2024, Musk claimed that Tesla would unveil and demo the new Roadster by the end of the year:

It also didn’t happen, and the CEO instead said that Tesla was “close to finalizing design” at the end of 2025.

Electrek’s Take

The comment about the demo makes me think of the Roadster, but it could be something else. Maybe a bot, but I’m not sure out of the design studio.

Either way, for the reasons listed above, it’s hard to get too excited.

You can’t just believe what Musk says these days. Historically, he has been wrong or lied too often, especially about upcoming demonstrations like this new comment.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending