Connect with us

Published

on

High winds, a beaming sun, a remote landscape — the National Renewable Energy Laboratory’s (NREL’s) Flatirons Campus might be a familiar environment to military servicemembers. Here at “Fort Renewable,” down a dirt road from the main research campus, military Quonset huts are dispersed among energy assets like solar photovoltaics and battery storage.

Compared to a real military base, the Fort Renewable setup is not so much forward-operating as forward-thinking, with its own critical mission: to design high-renewable systems for secure applications. With unique cyber and physical capabilities, NREL’s microgrid research platform is the scene of large-scale grid demonstrations that are helping the military, microgrid, and energy storage industries transition past technical barriers toward extreme renewable integration.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

Quonset huts at NREL replicate military microgrid environments so that DOD and partners can reliably evaluate energy security with renewables and battery storage.

A Competition To Create Quality Microgrids

Microgrids are nothing new to the military, and especially nothing new for NREL–Department of Defense (DOD) collaborations. But as new threats emerge on energy systems — generally cyber and environmental — the DOD is now looking to bolster its backup power with battery storage, in place of a current preference for diesel generators.

“We’ve had military microgrids for 20 years now,” said Brian Miller, a senior NREL researcher and microgrid research lead. “But we didn’t have batteries back then, and very little solar.”

Relying on diesel generators alone could put microgrids at risk. If a true disaster scenario takes down the grid for an extended period, the military’s old diesel generators would not survive multiweek outages.

“Renewables and battery storage have the potential to last longer on fuel supplies and provide important energy diversity,” Miller said.

To discover the best microgrid-storage implementations across its diverse sites, the DOD arranged a unique program that is half competition, half technology accelerator. Under the program, the early-stage companies have been invited to validate their microgrid solutions on progressively more realistic grid systems, and progressively more challenging platforms. This way, companies can quickly gain field experience, DOD can confidently invest in its own microgrid improvements, and the experimental results will be widely available as stakeholder resources.

The project is facilitated through the DOD Environmental Security Technology Certification Program (ESTCP) and therefore inherits the program’s goal of assisting early-stage commercial products past the difficulties of breaking into the market. Each participating company is matched with an industry principal investigator, forming teams of two that apply the commercial concepts to real microgrid operations.

The validations got underway in 2020. While each of the participating teams are ultimately striving to prove their technologies at an actual DOD base, they first must advance through two lower-fidelity trials. These initial validations are taking place at NREL, where energy systems can be emulated to exact similarity under most any scenario.

Building Military Microgrids at a Replica Base

In preparation for the program, NREL refashioned its world-class power systems research platform ARIES into a distributed military microgrid — off-grid as a DOD base might be, but with high-performance experimental assets like weather stations and six-strand fiber optic communication links. At NREL’s Fort Renewable, DOD and participating companies have now been able to truly validate and derisk commercial microgrid systems.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Each team’s microgrid-battery storage solution is tested against emulated power outages, which the microgrid controls must be capable of managing.

Phase 1 of the program brought seven teams to NREL, where their microgrid-storage concepts were plugged into virtual systems and analyzed with simulated operations. This first phase validated teams’ technologies on a model military base, testing whether the devices could respond with a baseline level of performance, and filtered the number of participating teams down to four. Phase 1 results are available on the ESTCP website.

Phase 2 of the project raised the bar higher: Teams have submitted their technologies to more rigorous validations on a near-exact approximation of DOD’s Naval Air Station Patuxent River (NAS Patuxent River) — a 34-MW Air Force base in Maryland — replicated right inside NREL.

“Our platform is built such that users can prove their designs for islandable microgrids that are able to provide power in a long-duration emergency at a reasonable cost,” said Miller, who led the development of the military microgrid research platform. “Doing a study is one thing, but you can’t pencil whip whether a power hardware is successful. That’s why these companies come to NREL. If they can leverage our capabilities, it’s huge.”

Miller, himself once a major in the U.S. Air Force, has a career’s worth of energy resilience experience drawn from service overseas and across the United States, and used his background to build out the replica research environment.

The research platform involves about 250 kW of hardware, which is variously swapped with teams’ technologies — everything from microgrid switches and controllers to batteries. The teams rely on NREL for the rest of the microgrid environment: power and grid emulators, SCADA networks, switchgear, load banks, renewable resources, and a replica of the NAS Patuxent River grid.

And that covers just the hardware. The full platform crosses nearly every lab space in NREL’s Energy Systems Integration Facility and connects out to the Flatirons assets miles away. An integrated Cyber-Energy Emulation Platform (CEEP) digitally emulates communications and controls for the microgrids, while a vast sensor network simultaneously collects power data at all points throughout the microgrid and visualizes interactive metrics in real time. All told, the military microgrid research platform is as close to real as the teams will experience until Phase 3.

Microgrid Lessons for a Larger Grid

Each team has a different approach to microgrid-storage solutions: One is using redox-flow batteries, others bring their own microgrid controllers, and another is validating lithium iron phosphate battery storage. As of Phase 2, the participating teams are led by Ameresco, the Energy Power Research Institute, Raytheon, and SRI and Arizona State University. Cummins, which helped NREL build out the military microgrid research platform and contributed its microgrid controller to the design, has also thrown its hat into the program. NREL could not resist entering the action as well.

The teams have an important stake in the program — successful validations could carry their products from relative obscurity to energy markets anywhere, with the bonus of being proven in highly demanding applications. But the larger energy industry stands to gain something more: The demonstrations are establishing first-ever data around what works for critical applications of energy storage in microgrids.

“This project is about learning how critical loads can survive disaster and outage scenarios,” said Martha Symko-Davies, laboratory program manager of the ESIF. “We’re not validating microgrids for the military only; we want to do this for the whole country. Future campuses and microgrid systems will look to this project for examples, and to NREL for microgrid research capabilities that exist nowhere else.”

In this perspective, project teams endure the hardest tests so that future microgrids can better survive worst-case scenarios. NREL validations force difficult decisions that a critical microgrid could encounter, like choosing between multiple critical loads. For participating teams, their early-stage concepts that have scarcely seen commercial applications are up against disasters that any system would hope to never see, but nevertheless must prepare for.

“Some universities maintain billion-dollar inventories of temperature-controlled cell cultures, for example. This is a critical load compared to other buildings on campus, and a functional microgrid should be able to allocate power accordingly,” Miller said.

NREL is advancing distributed grid and microgrid control and optimization solutions through research such as Autonomous Energy Systems and products like OptGrid.

Beyond specific technologies, this ESTCP evaluation program is creating important knowledge for microgrids generally. Networked microgrids are an upcoming approach for accommodating distributed energy while enhancing resilience against future threats. Likewise, the Autonomous Energy Systems portfolio of work is developing microgrid controls for autonomous configuration and operation of connected microgrid systems. In each topic, the ESTCP program is showing what critical microgrid operations look like — the real results of applying renewable energy assets to resilience events.

As the participants move to Phase 3 of the program — installation at one of seven DOD microgrid sites — industry moves one step closer to resilient renewable microgrids. For all the expectations that microgrids and renewables could reliably support critical loads, a new class of commercial players is arriving with the first data to show exactly how.

Article courtesy of NREL.

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

See & test drive your favorite EVs at Drive Electric Earth Month, all April

Published

on

By

See & test drive your favorite EVs at Drive Electric Earth Month, all April

It’s that time of year again, time for events across the country to show off electric vehicles at Drive Electric Earth Month.

Drive Electric Earth Month is an offshoot of Drive Electric Week, a long-running annual tradition hosting meetups mostly in the US, but also occasionally in other countries. It started as Drive Electric Earth Day, but since not every event can happen on the same day, they went ahead and extended it to encompass “Earth Month” events that happen across the month of April. It’s all organized by Plug In America, the Sierra Club, the Electric Vehicle Association, EV Hybrid Noire, and Drive Electric USA.

Events consist of general Earth Day-style community celebrations, EV Ride & Drives where you can test drive several EVs in one place, and opportunities to talk to EV owners and ask them questions about what it’s like to live with an EV, away from the pressure of a dealership.

This month, there are 180 events registered across the US and 2 in Canada (including one online webinar about things to consider when purchasing an EV). Events have already started, with a smattering happening over the last few weekends, and the bulk of them this weekend, April 20-21.

Here’s a sample of some of the still-upcoming events this month:

  • Phoenix Ride and Drive in Phoenix, AZ – Wells Fargo will be giving away an EV, along with ride & drives. April 20, 8am-12pm.
  • SpaceCoast EV Earth Day in Melbourne, FL, at the American Muscle Car Museum, the largest solar-powered auto museum in the world. Displays include a custom electric camera car for cinematography, the Bricklin 3EV prototype, and NASA’s Apollo Moon Buggy. April 20, 10am-2pm.
  • Electrify Regina in Regina, Saskatchewan, with EV and e-bike test rides and presentations on green tech like heat pumps. April 20, 10am-4:30pm.
  • PUD Energy Block Party in Everett, WA, which currently has 47 vehicles registered as attending and includes something called a “Truckstravaganza.” April 27, 11am-2pm.
  • Salem Kicks Gas in Salem, MA with a large variety of EVs on display and test drives from local dealers, along with e-bike and other battery-powered outdoor equipment displays. April 28, 1pm-4pm.

Each event has a different assortment of activities (e.g. test drives won’t be available at every event, generally just the larger ones attended by local dealerships), so be sure to check the events page to see what the plan is for your local event.

These events have offered a great way to connect with owners and see the newest electric vehicle tech, and even get a chance to do test rides and drives in person. Attendees got to hear unfiltered information from actual owners about the benefits and trials of owning EVs, allowing for longer and more genuine (and often more knowledgeable) conversations than one might normally encounter at a dealership.

And if you’re an owner – you can show off your car and answer those questions for interested onlookers.

To view all the events and see what’s happening in your area, you can check out the list of events or the events map. You can also sign up to volunteer at your local events, and if you plan to show off your electric car, you can RSVP on each event page and list the vehicle that you plan to show (or see what other vehicles have already registered).

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Kia EV5 GT leak reveals sporty electric SUV design

Published

on

By

Kia EV5 GT leak reveals sporty electric SUV design

A new Kia electric SUV is getting the GT treatment. Images leaking out of China are giving us our first look at the Kia EV5 GT trim.

Meet Kia’s new EV5 electric SUV

Kia officially unveiled the EV5, its new compact electric SUV, at the Chengdu Motor Show in August. Branded as a family-friendly SUV, the EV5 features Kia’s new “Opposites United ” design.

You can see several elements pulled from Kia’s larger EV9 like the redesigned “Tiger Face” grille, which replaces the signature “Tiger Nose.” It retains the EV9’s boxy, rugged look but in a smaller package.

Aimed at millennials, Kia designed the interior for more than getting from point A to point B. Kia considered it an additional “room” to live in.

It also includes Kia’s next-gen connected car Navigation Cockpit (ccNC) with dual 12.3″ display screens and a 5″ climate control display.

At 4,615 mm long, 1,875 mm wide, and 1,715 mm tall, the EV5 will rival Tesla’s top-selling Model Y (L – 4,760 mm, W – 1,921 mm, H – 1,624 mm).

Kia-EV5-GT-leak
Kia EV5 electric SUV (Source: Kia)

Kia launched the EV5 in China at around $20,000 (149,800 yuan). Powered by a 64.2 kWh BYD Blade battery pack, the base EV5 features up to 329 miles (530 km) CLTC range. The long-range, 88.1 kWh battery pack model is good for up to 447 (720 km) CLTC range.

In Australia, where the EV5 is imported, it will cost around $46,000 (70,000 AUS). An entry-level Air trim is expected to undercut the Tesla Model Y in the region, which starts at around $43,160 (65,400 AUD).

Kia-EV5-GT-leak
Kia EV5 battery options and range (Source: Kia)

Kia EV5 GT leak reveals new sporty electric SUV design

We are getting our first look at the Kia EV5 GT after leaked images from China’s Ministry of Industry and Information Tech (MIIT) released official images and specs of the vehicle.

As you can see, there are not many differences on the outside. There is added black trim on the lower front bumper. However, other Kia GT vehicles also include subtle visual differences. The big difference maker is in the performance.

The EV5 GT will feature a dual motor system, with a 215 hp (160 kW) front and 98 hp (73 kW) rear electric motor, for a combined 313 hp output.

Although the final details have yet to be revealed, the EV5 GT is expected to have 0 to 60 mph capabilities in under 6.5 seconds.

Kia’s new electric SUV is not the only one getting the GT treatment. All of Kia’s new EVs, including the EV2, EV3, and EV4, are expected to gain a GT trim.

Kia's-EV2-video
Kia EV lineup from left to right: EV6, EV4, EV5, EV3, EV9 (Source: Kia)

They will join the EV6 GT, which packs 576 hp for a 0 to 60 mph sprint in 3.2 seconds. Kia put the EV6 GT up to the test against a Ferrari Roma and Lamborghini Huracan Evo Spyder RWD and beat both off the line.

Earlier today, we got our first glimpse of the low-cost EV2 out testing in public. The EV2 is expected to be Kia’s cheapest EV with starting prices around $15,000 (20 million Won). You can watch the video here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Podcast: Tesla layoffs, all-in on Robotaxi, shareholders vote, and more

Published

on

By

Podcast: Tesla layoffs, all-in on Robotaxi, shareholders vote, and more

On the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Tesla’s massive round of layoffs, Elon Musk putting Tesla all-in on Robotaxi, important shareholders vote, and more.

The show is live every Friday at 4 p.m. ET on Electrek’s YouTube channel.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:

We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the podcast:

Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET):

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending