Connect with us

Published

on

The International Space Station (ISS) was thrown briefly out of control on Thursday when jet thrusters of a newly arrived Russian research module inadvertently fired a few hours after it was docked to the orbiting outpost, NASA officials said.

The seven crew members aboard – two Russian cosmonauts, three NASA astronauts, a Japanese astronaut, and a European space agency astronaut from France – were never in any immediate danger, according to NASA and Russian state-owned news agency RIA.

But the malfunction prompted NASA to postpone until at least August 3 its planned launch of Boeing’s new CST-100 Starliner capsule on a highly anticipated uncrewed test flight to the space station. The Starliner had been set to blast off atop an Atlas V rocket on Friday from the Kennedy Space Center in Florida.

Thursday’s mishap began about three hours after the multipurpose Nauka module had latched onto the space station, as mission controllers in Moscow were performing some post-docking “reconfiguration” procedures, according to NASA.

The module’s jets inexplicably restarted, causing the entire station to pitch out of its normal flight position some 250 miles above the Earth, leading the mission’s flight director to declare a “spacecraft emergency,” US space agency officials said.

An unexpected drift in the station’s orientation was first detected by automated ground sensors, followed 15 minutes later by a “loss of attitude control” that lasted a little over 45 minutes, according to Joel Montalbano, manager of NASA’s space station programme.

‘Tug-of-war’

Flight teams on the ground managed to restore the space station’s orientation by activating thrusters on another module of the orbiting platform, NASA officials said.

In its broadcast coverage of the incident, RIA cited NASA specialists at the Johnson Space Center in Houston, Texas, as describing the struggle to regain control of the space station as a “tug of war” between the two modules.

At the height of the incident, the station was pitching out of alignment at the rate of about a half a degree per second, Montalbano said during a NASA conference call with reporters.

The Nauka engines were ultimately switched off, the space station was stabilised and its orientation was restored to where it had begun, NASA said.

Communication with the crew was lost for several minutes twice during the disruption, but “there was no immediate danger at any time to the crew,” Montalbano said. He said “the crew really didn’t feel any movement.”

Had the situation become so dangerous as to require evacuation of personnel, the crew could have escaped in a SpaceX crew capsule still parked at the outpost and designed to serve as a “lifeboat” if necessary, said Steve Stich, manager of NASA’s commercial crew programme.

What caused the malfunction of the thrusters on the Nauka module, delivered by the Russian space agency Roscosmos, has yet to be determined, NASA officials said.

Montalbano said there was no immediate sign of any damage to the space station. The flight correction maneuvres used up more propellant reserves than desired, “but nothing I would worry about,” he said.

After its launch last week from Kazakhstan’s Baikonur Cosmodrome, the module experienced a series of glitches that raised concern about whether the docking procedure would go smoothly.

Roscosmos attributed Thursday’s post-docking issue to Nauka’s engines having to work with residual fuel in the craft, TASS news agency reported.

“The process of transferring the Nauka module from flight mode to ‘docked with ISS’ mode is underway. Work is being carried out on the remaining fuel in the module,” Roscosmos was cited by TASS as saying.

The Nauka module is designed to serve as a research lab, storage unit, and airlock that will upgrade Russia’s capabilities aboard the ISS.

A live broadcast showed the module, named after the Russian word for “science,” docking with the space station a few minutes later than scheduled.

“According to telemetry data and reports from the ISS crew, the onboard systems of the station and the Nauka module are operating normally,” Roscosmos said in a statement.

“There is contact!!!” Dmitry Rogozin, the head of Roscosmos, wrote on Twitter moments after the docking.

© Thomson Reuters 2021


Continue Reading

Science

Virginia Tech Engineers Craft Durable, Self‑Repairing, and Recyclable PCBs

Published

on

By

Virginia Tech Engineers Craft Durable, Self‑Repairing, and Recyclable PCBs

A team of scientists has developed a new kind of self-healing circuit board that stays functional even after severe mechanical damage and can be reshaped or recycled entirely using heat. Infused with liquid metal and built using a polymer known as vitrimer, the new circuit boards could dramatically cut electronic waste and transform the durability of consumer electronics. Vitrimer retains the strength of traditional thermoset materials while allowing flexibility and repair, making it possible to reconfigure damaged boards without compromising electrical performance.

As per a study published in Advanced Materials on June 1, the boards were created by blending vitrimer with just 5% by volume of liquid metal droplets. This combination nearly doubled the material’s strain-at-break, or stretchability, compared to vitrimer alone. The embedded droplets are flexible as well, serving as flexible conductors in place of metal wiring used in traditional boards. Using a rheometer, tests showed the material was able to return to its original shape after heat-induced deformation ranging from 170°C to 200°C, which conventional epoxy-based thermosets cannot achieve.

Engineers also demonstrated that the material remains highly conductive and can recover its electrical function after being damaged. “Modern circuit boards simply cannot do this,” said Josh Worch, co-lead author of the study. His team designed the dynamic composite with the aim of building a circular economy around electronics. The design addresses a major environmental concern: most circuit boards today use thermosets that cannot be recycled and end up in landfills.

Electronic waste has more than doubled in 12 years, from 34 to 62 billion kilograms, as noted in a 2024 UN report. Despite containing valuable metals like gold, current boards are difficult to break down and reclaim due to the permanent nature of thermosetting plastics. The new vitrimer-based design, by contrast, allows for easy separation and reuse of materials. “Even if the board is damaged,” said Michael Bartlett, another co-lead author, “electrical performance will not suffer.”

More work needs to be done to improve the recovery of some elements, but the advance is a big step toward greener electronics, the researchers say. The technology could one day be in many different types of devices, from phones and laptops to wearables and TVs, changing the way devices are made, operated, and recycled.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Meta CEO Mark Zuckerberg Reportedly Restructures AI Division, Creates Meta Superintelligence Labs



Nothing Phone 3 First Impressions

Continue Reading

Science

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

Published

on

By

Newly Detected Seaborgium-257 Offers Critical Data on Fission and Quantum Shell Effects

German Scientists at GSI Helmholtzzentrum für Schwerionenforschung found a new superheavy isotope, 257Sg, named Seaborgium, which reveals unexpected details about the stability and nuclear fission. This study was published in Physical Review Letters and describes how this isotope, made by fusing chromium-52 with lead-206, survived for 12.6 milliseconds, longer than usual. The rare longevity and decay into 253Rf provide new indications of how K-quantum numbers or angular momentum impact the fission resistance. The findings fill in the gaps and give us an understanding of the effects of quantum shells in superheavy nuclei, which is crucial for preventing immediate disintegration.

Challenging Traditional Views on K-Quantum Numbers and Fission

As per the study by GSI, it challenges conservative views on how K-quantum numbers impact fission. Previously, it was found that the higher K values lead to greater fission hindrance, but after getting the findings from the GSI team, a more complex dynamic emerged. They found that K-quantum numbers offer hindrance to fission, but it is still ot known that it is how much, said Dr. Pavol Mosat, the study’s co-author.

Discovery of First K-Isomeric State in Seaborgium

An important milestone is the identification of the first K-isomeric state in seaborgium. In 259Sg, the scientists found that the conversion of the electron signal occurs 40 microseconds after the nuclear formation. This is clear evidence of the high angular momentum K-isomer. These states have longer lifetimes and friction in fission in a more effective way than their ground-state counterparts.

Implications for the Theorised Island of Stability

This discovery by the scientists provides key implications for the Island of stability, which has long been theorised. It is a region where superheavy elements could have comparatively long half-lives. If K-isomers are present in the still undiscovered elements such as 120, they can enable scientists in the detection of nuclei that would otherwise decay in just under one microsecond.

Synthesising 256Sg with Ultra-Fast Detection Systems

This team of German Scientists under GSI is now aiming to synthesise 256Sg, which might decay quicker than observed or predicted. Their success is dependent on the ultra-fast detection systems created by GSI, which are capable of capturing events within 100 nanoseconds. This continued research by the team may help in reshaping the search and studying the heaviest elements in the periodic table.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


OpenAI Says It Has No Plan to Use Google’s In-House Chip



Apple Loses Bid to Dismiss US Smartphone Monopoly Case

Continue Reading

Science

NASA CODEX Telescope on ISS Reveals Hidden Secrets of the Sun’s Corona

Published

on

By

NASA CODEX Telescope on ISS Reveals Hidden Secrets of the Sun’s Corona

A mini solar telescope aboard the International Space Station caught the first-ever images, which reveal the subtle and never-seen changes in the outer atmosphere of the Sun. It is known as the Coronal Diagnostic Experiment (CODEX) and has been designed to understand the solar corona, the outer layer of the Sun, in depth. This mini telescope functions like a coronagraph, which blocks the Sun’s disk to imitate the total solar eclipse. CODEX was delivered through SpaceX Dragon on November 5, 2024. It was mounted on the ISS using the Canadarm2 robotic arm on November 9, 2025.

Revolutionising Solar Observation

According to the report by NASA, the unique design of CODEX consists of an occulting disk the size of a tennis ball held by three arms made up of metal. It allows it to block the intense sunlight when imaging the faint corona. The first images were revealed on June 10, 2025, at the time of the American Astronomical Society’s meeting in Alaska. These comprised pictures of coronal streamers and footage of the temperature fluctuations in the outer corona over many days. This offers a fresh perspective on solar dynamics.

Measuring Solar Wind Like Never Before

CODEX is unlike the previous coronagraphs as it is the first to measure both the speed and temperature of the solar wind. There is a constant flow of superhot particles from the Sun. With the help of four narrowband filters, in which two are used for determining the temperature and two for speed, astronomers compare brightness to decode these properties, which helps in solving the mystery of how the solar wind reaches 1.8 million degrees Fahrenheit.

Tackling the Solar Weather Challenge

To know the solar wind, it is crucial to predict the geomagnetic storms triggered by the coronal holes. Shortly, the storms observed on June 13, 2025 and June 25, 2025, caused auroras because of these events. After refining the analysis of solar wind, CODEX can help in mitigating and forecasting such kind of disturbances.

A Timely Launch Amid Solar Peak

NASA’s CODEX started operations at a suitable moment, just as the current solar maximum comes to its end. As the magnetic field of the Sun shifts during the solar battle zone, CODEX is ready to catch the critical data that can change our understanding of the weather in space.

Continue Reading

Trending