Connect with us

Published

on

Climate change has the odd effect of making many of us inordinately excited about appliances we never used to care about. Suddenly, all the background machines, which have up to now been unconsciously powering our lives, have taken on outsized importance. Some of them have the potential to provide the essential services we depend on while, at the same time, not destroying our planet like the fossil fuel powered machines of the 19th and 20th centuries.

Ductless heat pumps are a prime example. In the past, many of us used gas furnaces and boilers to heat our homes and burned fuels that emitted copious amounts of CO2 in the process. Now, with the magical heat pump, we have access to efficient electric technologies for heating and cooling that can be powered entirely by renewable energy, and thus be carbon neutral.

Photo courtesy of The Heat Pump Store

Brief History and Growth of Ductless Heat Pumps

Ductless heat pumps (DHPs) were developed in Japan after World War 2. They were invented and perfected on an island that doesn’t have easy access to fossil fuels, and so they are the ideal heating/cooling system for our modern world given they don’t rely on combustion and are also incredibly efficient.

They condition 90% of Japanese homes, and worldwide their usage is growing like crazy, with an expected doubling of heat pump sales in the next five years. In the UK, sales are projected to increase 20 fold, and in the US, some areas are seeing sales growth north of 40% every year.

My family has used ductless heat pumps for our heating and cooling since 2012 when we bought our house. The gas furnace that came with our house was old, and we made the decision to replace it with new ductless heat pumps. (A major perk is that mounting the units on the wall saved valuable floor space in the garage, formerly dedicated to the gas furnace, which we converted into an apartment). We had seen them used in Europe and figured, even 9 years ago when the electrification movement was in its infancy, that heating with efficient electricity would allow us to reduce our carbon emissions with the solar panels we planned to install on our roof. 

Photo from Joe Wachunas

What is Ductless?

But what is a Ductless Heat Pump (a.k.a. mini-split)? Basically, it is a heating/cooling system that is different from a traditional furnace in several ways:

1. DHPs don’t have air ducts. Rather than forcing hot air through potentially leaky ducts, ductless systems place an indoor device on a wall and an outdoor unit (similar to a typical AC unit) which provides heating and cooling. This means no air escapes through leaky ducts, creating more efficient conditioning. 

Indoor unit. Photo Courtesy of The Heat Pump Store.

2. DHPs don’t burn things. Ductless heat pumps use electricity to provide heating and cooling. Electricity is rapidly moving towards being fully renewable and thus will soon produce zero emissions (the Biden administration set a goal of 2035 for example).

3. DHPs are like refrigerators in reverse. Instead of burning fuel, ductless heat pumps create heating and cooling through refrigeration. This means they capture heat from outside (even when it’s cold) and move it into your house, and vice versa for cooling. It’s pretty magical. The refrigerants used by DHPs can be potent greenhouse gases themselves, but luckily the world is moving quickly to using better, more environmentally friendly refrigerants (check out this website for a new type of refrigerant called R32).

Refrigerant lines from ductless heat pumps. Photo courtesy of The Heat Pump Store.

4. DHPs are incredibly efficient. This is because a) no air leaks through ducts b) they heat the room they are in (rather than the whole house), c) moving heat is vastly more efficient than creating it, and d) they use inverter systems (see below). As a result, they typically use three times less energy than old electric resistance heaters and six times less than gas. 

Demystifying a couple DHP terms 

Speaking of efficiency, let’s demystify a couple of terms associated with ductless heat pumps.

SEER — SEER is a number that measures how well a technology provides cooling. The higher the number, the more efficient the unit. Most new air conditioners have a SEER between 13 and 21, but ductless can often see a SEER over 30, which gives you an idea of how efficient they are. If you’re in a warm climate, SEER is especially important.

HSPF — HSPF stands for Heating Season Performance Factor and complements the SEER rating in that it measures how efficiently a heat pump heats a space. The minimum required HSPF rating in the US is 7.7. An 8.5 score is considered good, and over 10 is excellent. If you’re in a cooler climate, where the predominant energy use is for heating, HSPF is most important.

Example of SEER and HSPF ratings

I interviewed Tim Sharp, from the Heat Pump Store here in Oregon, which has installed thousands of ductless heat pumps over the last decade. He said that you’ll want your DHP to be most efficient in heating if you’re in a cold climate, and cooling if you’re in a warm climate. People in the northern US should probably focus on HSPF, while in the southern US, people should focus on SEER. Tim also said that investing in a DHP with higher scores will be more expensive up front, but the additional cost usually pays for itself over time through energy savings.

Ductless Heat Pumps in Cold weather

I also learned from Tim that DHPs were originally developed to provide only cooling (like a refrigerator), yet they have “constantly gotten better for heating purposes in almost every environment.” If you’re in a cold climate, you probably want to think about the “extended capacity” models, which are able to provide more heating. According to Tim, they don’t cost significantly more and offer more BTUs per hour output. Read more on how to use heat pumps in cold climates here

Ductless vs. Ducted

If you have existing ductwork in a space, you may consider a different approach when transitioning to heat pumps.  Not all heat pumps are ductless. You can get central heat pumps that work with a typical central AC system, and provide heating that blows that hot air through ducts. These central heat pumps are not much more expensive than central air conditioning, and many people think that swapping out every central AC system for a ducted heat pump is an important strategy to quickly get us off natural gas and reduce carbon emissions.

Ductless, on the other hand, is a no-brainer when you’re adding heating or cooling to a room without any ductwork. And DHPs also offer greater efficiency as well as economic and environmental advantages over a central ducted heating system. In addition to the efficiencies mentioned above, ductless heat pumps use inverter technology, which means they run at variable speeds. Tim from the Heat Pump Store compares this to starting your car at a red light. Inverters slowly rev the engine when starting and stopping, while typical central AC systems gun it and brake hard, meaning they are much less efficient. All DHPs use inverter technology, while virtually all conventional (ducted) heat pumps don’t, meaning DHPs are much more efficient. 

My family chose ductless heat pumps in our house, rather than a whole house heat pump, even though we had existing ductwork from our old gas furnace because of the increased efficiency. 

Photo courtesy of The Heat Pump Store

Humidity and air quality

Though ductless heat pumps help to dehumidify a room, it is not their primary purpose. In places with humidity problems, a separate dehumidifier may still be necessary. Similarly, DHPs have built in air filters, but can’t generally filter air to the extent that ducted systems do with high rated MERV filters. Tim from The Heat Pump Store said that air filtering is considered a separate system, from heating/cooling, in places where heat pumps are most prevalent, and people typically buy another device for air filtration. 

Brands

There are four leading brands of ductless heat pumps: Mitsubishi, Fujitsu, LG, and Daikin. Most of the top brands are Japanese, given they first developed the technology. This NY Times article has some solid reviews on each of these four brands.

Choosing a contractor

Finding a good installer is important. Many contractors may try to talk you out of electric heating and cooling (and into gas). Plus, you’ll want someone to help you correctly size a system for your needs. That means someone with lots of experience in ductless heat pump systems as well as a good reputation and reviews. Getting three bids is always a solid strategy. One pro tip is to look on a manufacturer’s page for contractors in your area that are certified to install their product.

Photo Courtesy of The Heat Pump Store

Cost and Aesthetics

As Tim told me in our interview, ductless heat pumps aren’t a panacea. Any technology has its downsides. As my wife points out, the indoor equipment that sits high on your wall takes up space and isn’t the most beautiful thing in the world. Ductless Heat Pumps can also be expensive. A system with a single indoor unit can run $3,000–$5,000, but if you’re putting multiple “heads” throughout your house, costs can quickly go over $10,000. 

Yet, for me, after 9 years of heating and cooling our house with ductless heat pumps, and with the climate emergency we find ourselves in, any drawbacks to ductless heat pumps are vastly outweighed by their immense benefits. Heat pumps are the heating and cooling technology for this era of climate change, and ductless heat pumps are the most efficient versions of this technology. They allow us to get off fossil fuels and efficiently heat and cool, in any climate, with clean electricity.

Learn more and do a deep dive into Ductless Heat Pumps with Tim from the Heat Pump Store in a recent webinar I hosted with Electrify Now, and let us know about your thoughts and experiences with ductless heat pumps in the comments below!

Photo courtesy of The Heat Pump Store

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.


 



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Kia’s EV3 is the best-selling retail EV in the UK right now

Published

on

By

Kia's EV3 is the best-selling retail EV in the UK right now

Kia’s electric SUVs are taking over. The EV3 is the best-selling retail EV in the UK this year, giving Kia its strongest sales start since it arrived 34 years ago. And it’s not just in the UK. Kia just had its best first quarter globally since it started selling cars in 1962.

Kia EV3 is the best-selling EV in the UK through March

In March, Kia sold a record nearly 20,000 vehicles in the UK, making it the fourth best-selling brand. It was also the second top-seller of electrified vehicles (EVs, PHEVs, and HEVs), accounting for over 55% of sales.

The EV3 remained the best-selling retail EV in the UK last month. Including the EV6, three-row EV9, and Niro EV, electric vehicles represented 21% of Kia’s UK sales in March.

Kia said the EV3 “started with a bang” in January, darting out as the UK’s most popular EV in retail sales. Through March, Kia’s electric SUV has held on to the crown. With the EV3 rolling out, Kia sold over 7,000 electric cars through March, nearly 50% more than in Q1 2024.

Advertisement – scroll for more content

The EV3 was the best-selling retail EV in the UK in the first quarter and the fourth best-selling EV overall, including commercial vehicles.

Kia-EV3-best-selling-EV
Kia EV3 Air 91.48 kWh in Frost Blue (Source: Kia UK)

Starting at £33,005 ($42,500), Kia said it’s the “brand’s most affordable EV yet.” It’s available with two battery packs, 58.3 kWh or 81.48 kWh, good for 430 km (270 miles) and 599 km (375 miles) of WLTP range, respectively.

Kia-EV3-best-selling-EV
From left to right: Kia EV6, EV3, and EV9 (Source: Kia UK)

With new EVs on the way, this could be just the start. Kia is launching several new EVs in the UK this year, including the EV4 sedan (and hatchback) and EV5 SUV. It also confirmed that the first PV5 electric vans will be delivered to customers by the end of the year.

Electrek’s Take

Globally, Kia sold a record 772,351 vehicles in the first quarter, its best since it started selling cars in 1962. With the new EV4, the brand’s first electric sedan and hatchback, launching this year, Kia looks to build on its momentum in 2025.

Kia has also made it very clear that it wants to be a global leader in the electric van market with its new Platform Beyond Vehicle (PBV) business, starting with the PV5 later this year.

Earlier today, we learned Kia’s midsize electric SUV, the EV5, is the fourth best-selling EV in Australia through March, outselling every BYD vehicle (at least for now). The EV5 is rolling out to new markets this year, including Canada, the UK, South Korea, and Mexico. However, it will not arrive in the US.

For those in the US, there are still a few Kia EVs to look forward to. Kia is launching the EV4 globally, including in the US, later this year. Although no date has been set, Kia confirmed the EV3 is also coming. It’s expected to arrive in mid-2026.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Podcast: Tesla’s disastrous deliveries, more Trump tariffs, EV delivery numbers, and more

Published

on

By

Podcast: Tesla's disastrous deliveries, more Trump tariffs, EV delivery numbers, and more

In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Tesla’s disastrous deliveries, more Trump tariffs, EV delivery numbers, and more.

The show is live every Friday at 4 p.m. ET on Electrek’s YouTube channel.

As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.

After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:

Advertisement – scroll for more content

We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.

Here are a few of the articles that we will discuss during the podcast:

Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET):

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

University of Michigan cracks rapid EV charging in freezing temps

Published

on

By

University of Michigan cracks rapid EV charging in freezing temps

Charging your EV in freezing weather could soon become dramatically faster, thanks to a big breakthrough from the University of Michigan engineers.

Neil Dasgupta, U-M associate professor of mechanical engineering and materials science and engineering and corresponding author of a study published in Joule, and his team have developed an innovative battery structure and coating that can boost lithium-ion EV battery charging speeds by a whopping 500%, even at frigid temperatures as low as 14F (-10C). “Charging an EV battery takes 30 to 40 minutes even for aggressive fast charging, and that time increases to over an hour in the winter,” Dasgupta explained. “This is the pain point we want to address.”

Freezing weather has traditionally been harsh on EV batteries because it slows down the movement of lithium ions, resulting in slower charging speeds and reduced battery life. Automakers have tried thickening battery electrodes to extend driving range, but this makes some of the lithium hard to access, making charging even slower.

Previously, Dasgupta’s group sped up battery charging using lasers to carve pathways around 40 microns in size into the graphite anode. This allowed lithium ions to reach deeper into the battery more quickly. However, cold-weather performance still lagged because a chemical layer formed on the electrodes, blocking the ions. Dasgupta compares this barrier to “trying to cut cold butter,” making charging inefficient.

Advertisement – scroll for more content

To solve this, the team coated the battery with a thin, glassy material made of lithium borate-carbonate—only 20 nanometers thick—which prevented the problematic chemical layer from forming. Combined with the microscopic channels, the results were groundbreaking: the modified batteries retained 97% of their capacity even after 100 fast-charging cycles in freezing temperatures.

“We envision this approach as something that EV battery manufacturers could adopt without major changes to existing factories,” Dasgupta noted. “For the first time, we’ve shown a pathway to simultaneously achieve extreme fast charging at low temperatures, without sacrificing the energy density of the lithium-ion battery.”

This innovation could tackle one of the biggest concerns holding potential EV buyers back.

The new battery tech is moving closer to commercialization, supported by the Michigan Economic Development Corporation’s Michigan Translational Research and Commercialization (MTRAC) Advanced Transportation Innovation Hub. The research devices were built at U-M’s Battery Lab and studied with help from the Michigan Center for Materials Characterization.

U-M Innovation Partnerships assisted the team in applying for patents, and Arbor Battery Innovations has licensed the technology for market deployment. Dasgupta and the University of Michigan hold financial stakes in Arbor Battery Innovations.

Read more: California now has nearly 50% more EV chargers than gas nozzles


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending