Connect with us

Published

on

In this article

This photo, from 2019, shows a Scania cargo e-truck being powered by overhead electrical power lines on the A5 autobahn in Germany.
Alex Kraus | Bloomberg | Getty Images

The U.K.’s Department of Transport has commissioned a consortium to look into the viability of using overhead wires to power long-distance trucks.

Headed up by construction and engineering group Costain, it includes companies such as Scania and Siemens Mobility, among others, and represents the latest example of how industry and government are trying to develop solutions focused on decarbonizing transportation.

In a statement issued earlier this week, Costain explained how the consortium had “proposed an ‘electric road system'” that would harness Siemens Mobility’s “eHighway” technology, which uses overhead lines to provide trucks with electricity. 

According to Siemens Mobility, when using the eHighway, “trucks can operate completely electrically and at the same time charge their batteries without using fuel.”

The funding has been delivered via Innovate UK, the U.K.’s innovation agency. Costain said it was hoped the study, which is due to last nine months, would act as “the forerunner of a scheme that aims to see the UK’s major roads served by overhead lines by the 2030s.”

Breaking things down, the team will focus on the electrification of a stretch of road between the South Yorkshire town of Doncaster, its airport and the Port of Immingham, on the east coast of England. 

While the U.K.-based project will be looking into the potential of using overhead wires to power road-based transportation, the tech has already been deployed in other parts of the world. Siemens Mobility says tests of the eHighway are underway in Germany on three public routes.

Sue Kershaw, Costain’s managing director for transportation, described the study as “another important step towards understanding how industry could work together to tackle one of the largest carbon emission producers in the country.”

News about the eHighway initiative comes at the end of a month in which the U.K. government said it wanted to create a net zero transport sector by the year 2050.

The above goal represents a major task. According to the government, transport was responsible for 27% of the U.K.’s greenhouse gas emissions in 2019. Breaking things down further, heavy goods vehicles accounted for 18% of emissions from road-based transport.

In a sign of how times are changing, a number of major companies are now attempting to develop solutions to the challenges posed by the electrification of larger vehicles.

Three major transportation firms, for instance, look set to work with one another on the development of a European charging network for “battery electric heavy-duty long-haul trucks and coaches.”

In a joint announcement at the beginning of July, Volvo, Daimler Truck and the Traton Group said they had signed a non-binding agreement related to the installation and operation of the network.

The goal is to set up a joint venture that all three firms would own an equal part of, with operations slated to commence in 2022.

As the number of EVs on our roads increases, extensive charging networks will need to be rolled out for all types of vehicles to meet increased demand and dispel lingering concerns around “range anxiety” — the notion that EVs aren’t able to undertake long journeys without losing power and getting stranded.

The electrification of long-haul, heavy-duty trucks and coaches poses its own set of unique challenges. As the International Energy Agency’s Global EV Outlook for 2021 notes, “long-haul trucking requires advanced technologies for high power charging and/or large batteries.”

Continue Reading

Environment

Switzerland put vertical solar panels on a roadside retaining wall

Published

on

By

Switzerland put vertical solar panels on a roadside retaining wall

A canton in Switzerland commissioned a project in which solar panels were attached vertically to a roadside retaining wall.

The canton of Appenzell Ausserhoden in northeastern Switzerland is aiming to generate at least 40% of its electricity from renewables by 2035. So, it exercised a little creativity and covered a roadside retaining wall with 756 glass-glass solar panels.

The panels have an output of 325 kW and an energy yield of around 230,000 kWh annually. This is equivalent to the consumption of about 52 Swiss households. The energy will be fed into the grid of energy supplier St. Gallisch-Appenzellische Kraftwerke, and the canton will get a feed-in tariff in return.

German mounting system provider K2 Systems and Swiss contractor Solarmotion installed the vertical system on the 75-degree retaining wall. The panels were anchored on a mounting rail with HUS screw anchors, and Lichtenstein-based Hilti provided mechanical dowels. 

The PV system was anchored on and in the masonry using an adhesive technique. An anchoring depth of a maximum of 90 mm could not be exceeded so that the retaining wall would not be adversely affected.

Due to the close proximity to the asphalt, the solar panels’ components are subject to exceptional corrosion requirements and are anodized for protection. Indirect components are made of aluminum – only the screw anchors are made of stainless steel.

K2 Systems says that “especially in the winter months (when consumption and dependence on foreign electricity imports are at their highest), the vertically aligned modules will achieve a very good electricity yield.”

Electrek’s Take

This isn’t a big project, but it’s a delightfully creative one, which is why it caught my eye. A retaining wall is dead space, and snow will slide off the panels in Swiss winters.

We at Electrek love it when solar is installed in intelligent and inventive ways. Warehouse rooftops? Cover them. Highway medians? Canal covers? Box stores? Put solar on them. It just makes sense.

Read more: In a US first, California will pilot solar-panel canopies over canals

Photo: K2 Systems


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. – ad*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Doroni’s all-electric flying car gets flight certified in the US

Published

on

By

Doroni's all-electric flying car gets flight certified in the US

Flying electric cars are not just for sci-fi movies. Miami-based Doroni Aerospace announced Friday its all-electric flying car, the Doroni H1, received official FAA Airworthiness Certification. And the best part – it’s designed to fit in your garage.

Doroni’s all-electric flying car gets FAA-certified

Doroni claims to be the first company to test manned flights with a 2-seater flying electric car in the US. The Doroni H1 took flight earlier this year.

CEO Doron Merdinger successfully piloted the personal electric vertical takeoff and landing aircraft (eVTOL) this summer. Merdinger said receiving the flight certification “is not just a milestone for our company, but a leap forward for the entire field of personal air mobility.”

He says the electric flying car “is poised to redefine urban transportation.” Doroni’s aircraft has already received over 370 pre-orders as the startup wraps up funding efforts.

Powered by ten independent propulsion systems, the all-electric flying car has a claimed top speed of 140 mph (100 mph cruising speed) and 60 miles range. Its unique design ensures stability during flight.

all-electric-flying-car
Doroni’s electric flying car (Source: Doroni)

It includes four ducts containing two e-motors with patented ducted propellers. Eight are for vertical flight with an additional “two pushes.”

The two-seater aircraft is designed to fit inside a two-car garage at 23 ft in length and 14 ft in width. It also features fast charging (20% -80%) in under 20 minutes.

all-electric-flying-car
Doroni’s electric flying car prototype (Source: Doroni)

Electric flying cars coming to a dealership near you

Doroni’s all-electric flying car is semi-autonomous, meaning you can guide it to different levels. A controller stick is used to push you forward, backward, or to the side.

all-electric-flying-car
Doroni H1 interior control stick (source: Doroni)

Who would buy one of these? Doroni says one of its customers is a doctor who wants to use the aircraft to skip traffic on their way to work. However, you will need a certification. It requires at least 20 hours of experience, 15 inside the aircraft and another five solo.

Merdinger says the biggest use case for eVTOLs will be for air taxis or ride-sharing. Doroni aims for a different market though.

all-electric-flying-car
Doroni electric flying car concept (Source: Doroni)

The company says there is enough space to fly everywhere, especially in suburban areas. Doroni’s all-electric flying car is designed for more than just getting you from point A to point B. It allows you to “enjoy nature,” according to Merdinger.

Doroni expects to build about 120 to 125 units by 2025 or 2026. Eventually, the Miami-based startup plans on scaling to produce 2,500 eVTOLs annually. You can learn more about the electric flying car on Doroni’s website.

first-flying-electric-car-dealerships
(Source: Alef Aeronautics)

The company is the latest to receive the flight certification. Alef’s Model A was the first electric flying car to get certfied in June.

Alef said it had 2,500 pre-orders in July. The orders include 2,100 from individuals and 400 from businesses, including a California car dealership.

Electrek’s Take

Are electric flying cars going to take over road transportation? Not necessarily. At least not anytime soon.

Doroni and Alef are both working on niche markets, which makes the most sense for the time being. At the same time, the companies are pushing forward another sustainble means of transport.

As Merdinger explained “this is just the beginning,” as the technology advances.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Rivian already has a patent on Tesla’s Cybertruck ‘range extender’

Published

on

By

Rivian already has a patent on Tesla's Cybertruck 'range extender'

Tesla delivered the first Cybertrucks yesterday, and with that delivery event came the revelation that in order to get the range it promised, the Cybertruck needs a separate battery pack in the bed. But a similar battery pack system was already patented years ago, by one of Tesla’s competitors in the electric pick-up space.

Tesla’s Cybertruck website included a revelation about a feature that wasn’t mentioned in its presentation: a “range extender,” in the form of an additional battery pack in the truck bed which expands the truck’s range.

It’s an interesting solution, and we don’t know all the details of it yet. We don’t know the cost, the weight, how it will be installed and uninstalled, or whether it even can be uninstalled.

The battery pack is intended to be used “for very long trips or towing heavy things up mountains,” according to Tesla CEO Elon Musk. It takes up about a third of the truck bed, as can be seen in a photo posted on Tesla’s Cybertruck site.

Tesla Range extender battery pack

So, there’s still room for cargo, just not the full 6 feet of bed length that Tesla says the Cybertruck has.

But the fact that it was described as being used only “for very long trips or towing heavy things up mountains” suggests that it will be removable, since most people don’t do that sort of thing every single day.

Making it removable is actually a good solution, because it can lower prices, make packaging easier, and improve efficiency for vehicles that simply don’t need a ridiculously enormous 470-mile battery – and most drivers don’t need that.

And if it is removable, well, there’s already a patent on that.

In 2019, electric truck maker Rivian filed a patent for a “removable auxiliary battery” that would fit into the front third-or-so of the truck bed. This patent was granted in 2020, so Rivian currently has a patent on this technology.

The patent is described as:

An electric vehicle system for transporting human passengers or cargo includes an electric vehicle that includes a body, a plurality of wheels, a cargo area, an electric motor for propelling the electric vehicle, and a primary battery for providing electrical power to the electric motor for propelling the electric vehicle. An auxiliary battery module is attachable to the electric vehicle for providing electrical power to the electric motor via a first electrical connector at the auxiliary battery module and a second electrical connector at the electric vehicle that mates with the first electrical connector. The auxiliary battery module can be positioned in the cargo area while supplying power to the electric motor, and can be removable and reattachable from the electric vehicle. The auxiliary battery module includes an integrated cooling system for cooling itself during operation of the electric vehicle including a conduit therein for circulating coolant.

We aren’t patent lawyers here, but this sounds awfully similar to Tesla’s “range extender.” The obvious potential differences we can find are if the range extender doesn’t have integrated cooling, which is unlikely, or if the range extender isn’t removable, which doesn’t seem to jive with the statement that it is only for long trips or with the marketing showing it as an optional add-on (if that were the case, why not just offer different battery sizes?).

Tesla itself has many patents (and is still pursuing more of them), but has pledged not to “initiate patent lawsuits against anyone who, in good faith, wants to use its technology.” It announced this in a 2014 blog post, and followed up by saying that it thinks several companies are using its patents.

So next, the question is: is Tesla’s solution different enough to avoid Rivian’s patent protection? Has Tesla licensed the idea from Rivian, and we just haven’t heard about it yet? Or will Rivian return Tesla’s “good faith” and not initiate a patent lawsuit against Tesla, if it does feel like it has a good enough case to say that Tesla’s range extender infringes on its patent?

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending