Connect with us

Published

on

Boeing delayed an uncrewed flight of its Starliner capsule to the International Space Station (ISS) on Tuesday over a propulsion issue, pushing back by at least a day a key test it last attempted in 2019.

The spaceship had been due to launch on an United Launch Alliance (ULA) Atlas V rocket from the Cape Canaveral Space Force Station in Florida early in the afternoon.

But just over two hours before lift-off, the company tweeted it was scrubbing the flight.

A statement by NASA said the test was canceled not because of inclement weather but “due to unexpected valve position indications in the Starliner propulsion system.”

The next available launch opportunity is at 12:57pm Eastern time (10:27pm IST) on Wednesday, pending resolution of the problem.

“We’re disappointed with today’s outcome and the need to reschedule our Starliner launch,” said John Vollmer, vice president and program manager of Boeing’s commercial crew programme.

“Boeing and NASA teams will take the time they need to ensure the safety and integrity of the spacecraft and the achievement of our mission objectives.”

The test flight was supposed to take place Friday but had to be rescheduled after a new Russian science module inadvertently fired its thrusters following docking with the ISS, pushing the orbital outpost off kilter.

After NASA ended the Space Shuttle programme in 2011, it gave both Boeing and SpaceX multi-billion dollar contracts to provide its astronauts with taxi services to the space station and end US reliance on Russian rockets for the journey.

SpaceX’s programme has moved forward faster, having now undertaken three crewed missions.

Boeing’s programme is lagging behind, and needs to complete a successful uncrewed mission before it can carry astronauts.

During an initial uncrewed test flight in December 2019, the Starliner capsule experienced software glitches that caused problems with the way it fired its thrusters.

As a result, Starliner did not have enough fuel to reach the ISS and had to return to Earth prematurely, and a subsequent investigation showed it almost experienced a dire flight anomaly while reentering the atmosphere.

NASA later called the mission a “high visibility close call,” a rare designation reserved for near-catastrophes.

Steve Stich, manager of NASA’s commercial crew programme, told reporters last week he had confidence this time around.

“We want it to go well, we expect it to go well, and we’ve done all the preparations we can possibly do,” he said.

“Starliner is a great vehicle, but we know how hard it is, and it’s a test flight as well and I fully expect we’ll learn something on this test flight.”

When it flies, the spacecraft will carry more than 400 pounds (180kgs) of cargo and crew supplies to the ISS and will return more than 550 pounds of cargo, including air tanks, when it lands in the western US desert at the end of its mission.


Continue Reading

Science

Indian Ocean Anomaly Challenges Ekman’s Ocean Current Theory

Published

on

By

Indian Ocean Anomaly Challenges Ekman’s Ocean Current Theory

A study published in Science Advances has identified a significant anomaly to Vagn Walfrid Ekman’s widely-accepted theory on wind-driven ocean currents. Conducted by a team of researchers from NOAA, the Indian National Center for Ocean Information Services and the University of Zagreb, the study focused on the Bay of Bengal in the Indian Ocean. Data spanning several years from a buoy stationed off India’s eastern coast was examined, revealing that ocean currents in this region deflect leftward, contradicting the theory’s predictions for the Northern Hemisphere.

Ekman’s Theory and Its Longstanding Influence

The Ekman theory, developed in 1905 by Swedish oceanographer Vagn Walfrid Ekman, asserts that surface ocean currents are deflected 45 degrees to the right of wind direction in the Northern Hemisphere due to the Coriolis force. Successive layers beneath the surface exhibit similar patterns, forming the Ekman spiral. This mechanism, though robust, assumes idealised conditions, including uniform ocean depth and density. Variations such as those observed in the Bay of Bengal highlight its limitations.

Findings from the Bay of Bengal

As per the study, according to data collected over several years, currents in the Bay of Bengal were found to veer leftward despite prevailing winds, defying Ekman’s predictions. This anomaly underscores the need to reassess assumptions about global oceanic patterns. The researchers suggested that local factors, including unique regional wind patterns and oceanic dynamics, could play a significant role.

Implications for Climate Models

It was noted in a statement by the researchers that the findings could influence future climate modelling efforts. If exceptions to Ekman’s theory exist in the Bay of Bengal, others might also occur globally, underscoring the need for more detailed oceanographic studies. Discussions have also highlighted the potential deployment of a NASA satellite system to monitor wind and surface currents comprehensively.

This study has brought attention to gaps in understanding wind-driven currents, stressing the importance of revisiting established models as global warming continues to impact ocean behaviour.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


World Labs Unveils AI System That Can Generate 3D Interactive Worlds Using an Image



Samsung Galaxy Z Fold 7, Galaxy Z Flip 7 to Debut With Larger Displays: Report

Related Stories

Continue Reading

Science

ISRO’s PSLV-C59 to Launch ESA’s Proba-3 Mission for Sun Corona Study

Published

on

By

ISRO's PSLV-C59 to Launch ESA's Proba-3 Mission for Sun Corona Study

The Indian Space Research Organisation (ISRO) has scheduled the launch of the PSLV-C59 rocket carrying the Proba-3 spacecraft for December 4, 2024, at 4:08 PM IST, as per reports. The mission, a dedicated commercial venture of NewSpace India Limited (NSIL), will take off from the First Launch Pad at the Satish Dhawan Space Centre, Sriharikota. According to reports, this will mark the 61st mission of the Polar Satellite Launch Vehicle (PSLV) and the 21st use of its XL configuration.

Mission Overview

As per sources, Proba-3, a project developed by the European Space Agency (ESA), is an In-Orbit Demonstration (IOD) mission aimed at showcasing precision formation flying. The spacecraft consists of two components: the Coronagraph Spacecraft (CSC) and the Occulter Spacecraft (OSC). These satellites, launched in a stacked arrangement, will operate in tandem, maintaining a precise distance of 150 meters. The innovative configuration will enable the creation of artificial solar eclipses, allowing extended observation of the Sun’s corona.

Scientific Objectives

Reports indicate that the mission’s primary objective is to explore the Sun’s corona, the outermost layer of its atmosphere, to enhance understanding of solar dynamics and space weather. Instruments aboard the spacecraft have been designed to block the Sun’s intense light, facilitating detailed study of solar phenomena that are otherwise difficult to observe. Proba-3’s ability to continuously monitor the corona for up to six hours is expected to yield valuable scientific data.

Collaboration and Technology

The mission highlights significant collaboration between ISRO and ESA. Reportedly, the PSLV-XL rocket, equipped with additional strap-on boosters, will carry a payload weighing approximately 550 kg. The precision formation flying technology demonstrated by Proba-3 is expected to pave the way for advanced techniques in space exploration. The launch preparations at the Satish Dhawan Space Centre are underway, and all systems are reportedly on track for the scheduled liftoff.

Continue Reading

Science

Meet Homo juluensis: A newly discovered ancient human species

Published

on

By

Meet Homo juluensis: A newly discovered ancient human species

A new ancient human species, Homo juluensis, has been identified by researchers, marking a significant step in understanding human evolution in the Middle Pleistocene epoch. According to findings published in PaleoAnthropology in May 2024, the discovery is based on fossil evidence unearthed in China, with specimens dating between 220,000 and 100,000 years ago. The species, known as “big head people,” is characterised by large skulls, blending features seen in modern humans, Neanderthals and Denisovans.

Fossil Evidence and Characteristics

The fossils forming the basis of this new classification were recovered from sites in Xujiayao and Xuchang in northern and central China, as per reports. Excavations at Xujiayao in the 1970s yielded over 10,000 stone tools and 21 fossil fragments, representing at least 10 individuals. These fossils display large, wide crania with Neanderthal-like characteristics, yet also share traits with modern humans and Denisovans. Four additional ancient skulls discovered at Xuchang exhibit similar features.

The research team, led by Christopher Bae, an anthropologist at the University of Hawai’i and Xiujie Wu, a paleoanthropologist at the Chinese Academy of Sciences, concluded that these fossils represent a distinct hominin population. The findings indicate a likely continuity of hybridisation among Middle Pleistocene hominins, which shaped human evolution in eastern Asia.

Naming and Expert Perspectives

In a statement to Nature Communications, published in November 2024, the researchers advocated for using Homo juluensis to clarify eastern Asia’s complex fossil record. While some experts, such as Chris Stringer of the Natural History Museum in London, have suggested the fossils might align more closely with Homo longi, the designation of Homo juluensis has gained traction.

The name, according to Bae, in a statement, was introduced to improve scientific communication. Paleoanthropologist John Hawks of the University of Wisconsin–Madison noted in a blog post that such terminology allows clearer reference to this population’s place in the human evolutionary narrative. The discovery underscores the intricate relationships within ancient hominin groups and their evolutionary significance.

Continue Reading

Trending