Connect with us

Published

on

Anyone considering investing in solar panels will of course expect that it will be a while before they have paid for themselves producing valuable electricity. How long it will take to reach break even depends on many factors: The initial price of the system including full installation, the longevity of the hardware components of the system itself, the price rate structure of the utility energy provider including the grid operator, taxes on both sell and buy rates, whether you opt to include battery storage, and how much the system changes the value of the building on which the it is installed. Of course you could have a situation where panels are just installed and you pay on a monthly basis without actually owning the system in which case none of the following matters, except maybe the electric vehicle bits.

A Typical Solar Installation

To be honest, the overall question of this article is in reality impossible to answer accurately for any given system, but since I’ve had my solar panels for exactly 10 years know, I can at least provide some data for you to look at. These basic data of how much electricity is generated is useful for making more precise calculations for your local pricing structure, and thus help you forecast how long a given system you are interested in would be able to pay for itself. But first, some specifications on my system:

  • 16 panels with a total peak capacity of 4 kWp (I have only come close to this output at noon on very cold and windy summer days).
  • 2 inverters capable of 2 kW throughput each (at the time this was cheaper than 1 single 4 kW inverter and would make it easier to install an extra 2 kWp had I needed it).
  • Price including all hardware, installation, and tax credit (in 2011 the labour cost was deductible in Denmark): 100,000 DKK ($16,000). A similar system price today 10 years later: 50,000 — 70,000 DKK ($8,000 — 11,000) depending on local tax credits.
  • Geographical attributes: Panels facing south at a 30 degree angle, latitude and longitude (Decimal degrees): 56.3332, 10.3826.

Why not 6 kW, which is the largest allowed grid connected system on private property in my area? Well, although it would easily fit on my roof, I simply could not afford it at the time, and up until I got an electric car it would have more capacity than I needed all things considered.

Things to consider that can have a positive impact utilizing excess energy periods when not having opted for a battery as storage:

  • Fridge and deep freezer with timer.
  • Water heater with timer.
  • HVAC system with timer and zone optimisation.
  • Electric vehicle with timer and rate configuration of charge.
  • Training you own sense of when to use electricity, like vacuuming and washing when the sun is shining.

Of the points above I have really only focused on the last two in my everyday routines, and when the electric vehicle came into play, it became a challenge to micromanage the system to optimize the utilization of the system. It just so happened that the local net metering scheme changed at about the same time I purchased my latest EV, and it actually resulted in choosing the larger battery option in the car than I had originally planned. I have described the detailed considerations in an earlier article, and it seems obvious now 2 years later that the larger EV battery was worth it.

My calculations at the time showed that a battery that was 20 kWh larger would pay for itself within 10 years if I could manage the charging just by prioritizing sunshine. Since then I have changed my electricity supplier to one that sells electricity cheaper when wind turbines produce more power, thus making me prioritize charging in windy situations too.

Electricity consumption

First and foremost let’s look at electricity consumption. On average I use 3,000 kWh of electricity every year in my household. I do not use electricity for heating or cooling my house which is why total consumption might seem low. I am connected to district heating, and in Denmark the average outdoor temperature is so low that use of air conditioning systems (HVAC) for cooling is rare.

In the graph below covering a decade of net electricity consumption I have highlighted 4 years:

  • 2010 (blue): No solar panels and no EV. This represents my baseline electricity consumption in a typical full year.
  • 2014 (yellow): Solar panels installed, but still no EV. From March through September I get a surplus of electricity production.
  • 2016 (green): First full year of driving an EV, Nissan Leaf, 25,000 km/year (16,000 miles/year). Electricity consumption doubles to 6,000 kWh, and only in the summer is it possible to balance out consumption and production.
  • 2021 (red): With a Tesla Model 3 long range 75 kWh driving 35,000 km/year (22,000 miles/year) and the yearly net metering out the window, I prioritize free referral code Supercharging in the winter when solar power is low.

When I bought my panels a net metering scheme based on yearly accounting was in effect, but 2 years ago it was replaced with hourly accounting, which left many private solar system owners angry and a class-action lawsuit was initiated but dismissed in court. For nearly 8 years I had conveniently been able to do the math once a year: Subtract kWh consumed from kWh produced and as it turned out the average 3,750 kWh produced each year covered with a comfortable margin the 3,000 kWh consumed.

Getting and EV in the household countered to some degree the disadvantage of net metering on a yearly basis to an hourly basis by making sure to charge as often as possible when the panel generated a surplus of electricity. As mentioned this is the reason I chose a larger range EV than I had planned for. The 20+ kWh of battery capacity in the long range Tesla Model 3 made it easier to charge less often in order to prioritize the sunshine. Not perfect, but still noticeable in terms of freedom of when to charge compared to the low range Nissan Leaf and BMW i3 I had been driving the years prior.

Electricity Production

In order to get a sense of when an investment in a solar power installation will have paid for itself it is of course essential to pay close attention to how much electricity is being generated by the system.

In the graphs below it’s evident that I live relatively far north on the northern hemisphere. Note that this year in red actually deviates quite a lot from the yearly average since May and July usually are the best performing months due to slightly lower average temperatures than June. Solar panels perform best with clear skies and low temperatures preferably with a breeze cooling the panel even more. That’s why you see record outputs in May and July because June is often hotter and more humid. Except this year giving the exact opposite of the norm.

You might think that the sun is up the longest in June and thus should give more power, but since the panels are oriented south and given how far north I live, the sun rises in the north-east and sets in the north-west, sunlight in those very early and late hours do not fall on the panels.

What about degradation? Well, 10 years is of course not a lot to go by, but if the trend in the graph showing total year output persists there might be a couple of percent performance loss per decade. The big risk with panels is more in terms of build quality. If they puncture and moisture gets inside they will fail fast. I chose a high quality brand at the time, even though there where many much cheaper options available. In fact I could have saved 30 — 40% in total costs, but I figured that might cut the lifetime by maybe 50% thinking 4 decades out, and indeed I have spotted many solar panels of the same age and lower price beginning to deteriorate. Since production of silicon based solar panels is an energy intensive process, the longer they sit on the roof producing energy the better.

Note: In Denmark I pay roughly 2.2 DKK/kWh (35 cents/kWh) for grid electricity including taxes. When I sell surplus electricity to the grid I get paid a maximum of 0.3 DKK/kWh (5 cents/kWh) because taxes are not a part of it. No, this is not a typo, there is a lot of tax on energy in this country. This incentifies me to use my generated electricity rather than sell it, which is a challenge with hourly net metering. This is where a home battery and/or EV helps a lot.

Break Even

So, when will the system have paid for itself? Well, in my situation, accounting for the many variable parameters, it looks as if it will be another 2 years before I can say the panels finally produces energy for free. That’s 12 years total, which is not bad considering the panels themselves has a 20 year warranty on construction defects. I expect no less than 30 years of operation.

Checking prices today, I find that an equivalent quality system would cost 60% of what I paid 10 years ago including installation, so investing in solar just makes even more sense now, and more so going forward. Solar panel prices has fallen almost 10× in the last 15 years!

However, it gets more complicated when an EV is included in the mix. You could argue that the EV is part of the system, and that you would now have to look at the combined cost of the solar system and electric vehicle as one single utility since they are practically dependent of each other. I save money on energy to move the car around, and I am able to soak up the surplus energy from the panels much more efficiently.

I could choose to ask the question of when the whole package has paid for it self compared to buying all the electricity from the grid or compare the payback time of the electric vehicle to an equivalent fossil fueled vehicle. In any case solar and EV is without a doubt a win-win.

The share of global solar energy will certainly accelerate with battery storage pricing plummeting. Will I invest in a home battery? I will consider it when energy arbitrage and virtual power plants becomes the norm. In such a scenario it might even be feasible to move the old panels over on top of my garage and replace my whole 50 year old roof with solar tiles. Who knows?

The Takeaway

So, as I said, it’s no easy task to answer the main question of this article, and it is clear that the financial parameters change all the time, so maybe one should not spend too much time trying to calculate this to perfection, but rather just get on with investing in a solar system and rejoice over the savings from day one. It probably will pay off in the end no matter what.

And remember, it is clear that if you plan to include an EV into the mix sooner or later, a matching installed solar capacity could greatly lower the payback time for the combined financial expenditure, more so the more your driving needs.

Below is a few photos of the installation of my panels 10 years ago:

16 panels each with a peak output of 250 Watts

Panels are configured in 2 strands connected to 2 separate 2 kW inverters

The finished system busy doing its photon to electron magic



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Kia’s new PV5 ‘Spielraum’ is the ultimate electric camping van and it’s coming soon

Published

on

By

Kia's new PV5 'Spielraum' is the ultimate electric camping van and it's coming soon

Your next camping trip is about to get an upgrade. Kia just dropped two new electric van concepts based on the PV5. With AI-powered home appliances like a refrigerator and microwave, and even a wine cellar, Kia’s new PV5 “Speilraum” is an electric van built for camping and more.

Meet the Kia PV5 Spielraum: An electric van for camping

Kia wasn’t lying when it said its first electric van would offer something for everyone. At the 2025 Seoul Mobility Show on Thursday, Kia and LG Electronics unveiled two new electric van concepts based on the PV5.

The Spielraum electric vans are built for more than just getting you from one place to another. With LG’s AI-powered home appliances, custom interiors, and a wine cellar, the Speilraum models take the PV5 to the next level.

Kia unveiled two new concept vans, the Spielraum Studio and Spielraum Glow cabin. For those wondering, the term Spielraum is German for “Play Space” or leeway. In other words, Kia is giving you more freedom to move.

Advertisement – scroll for more content

The Studio version is designed as a mobile workspace with LG appliances like smart mirrors and a coffee pot. Using AI, the system can actually determine how long your trip will take and will recommend when to use the appliances.

Even more exciting (at least for the vanlifers out there), the Glow cabin converts the PV5 into a mobile camper van.

With a refrigerator, microwave oven, and added wine cellar (you know, for those long trips), Kia’s electric van is sure to upgrade your next camping trip.

Kia-PV5-camping-van
Kia PV5 Spielraum Glow cabin electric camping van concept (Source: Kia)

Kia and LG signed an MOU and plan to launch production versions of the Spielraum electric vans in the second half of 2026. The South Korean companies are also developing a new series of advanced home appliances and other AI solutions that could be included in the vans when they arrive.

The PV5 will initially be available in Passenger, Cargo, and Chassis Cab setups. However, Kia plans to introduce several new versions, including a Light Camper model.

Kia-PV5-Spielraum-electric-van
Kia and LG Electronics unveil two new PV5 Spielraum concepts (Source: Kia)

At 4,695 mm long, 1,895 mm wide, and 1,899 mm tall, the Kia PV5 passenger electric van is slightly smaller than the European-spec Volkswagen ID.Buzz (4,712 mm long, 1,985 mm wide, 1,937 mm tall).

With the larger 71.2 kWh battery pack, Kia’s electric van offers up to 400 km (249 miles) of WLTP driving range. It can also fast charge (10% to 80%) in about 30 mins to get you back on the road.

Kia will launch the PV5 in Europe and Korea later this year, with a global rollout scheduled for 2026. Ahead of its official debut, we got a closer look at the PV5 on public roads last month (check it out here).

Would you take the PV5 Spielraum Glow cabin for camping? Or are you going with the Studio version? Let us know in the comments.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla Cybertruck’s recall fix is a joke that leaves burn mark and gap

Published

on

By

Tesla Cybertruck's recall fix is a joke that leaves burn mark and gap

Tesla Cybertruck owners are starting to get the fix for the truck’s recent recall related to a falling trim. The fix is ridiculous for a $80,000-$100,000 vehicle as it leaves a weld burn and a panel gap.

Last month, Electrek reported that Tesla had quietly put a containment hold on Cybertruck deliveries.

While the reason was not confirmed at the time, we reported that we suspected that it was a problem with the cantrail, a decorative trim that covers the roof ledge of a vehicle. For the Cybertruck, it consists of the highlighted section below:

A week later, Tesla announced that it recalled all Cybertrucks ever made over an issue with the cantrail: it is falling off the Cybertruck.

Advertisement – scroll for more content

Now, some Tesla Cybertruck owners are starting to receive the “fix” for the recall, but it is quite disappointing for what is a $80,000 to $100,000 vehicle.

A Cybertruck owner in New Jersey was already having issues with his cantrail and had to have his tent system installed, so his truck was already at the service center when the recall happened. He was given back his truck with the fix, but he was disappointed with the results, which left a mark on the cantrail and a significant panel gap. He shared pictures via the Cybertruck Owners Club:

According to the recall notice, the fix is as simple as removing the trim, applying some butyl patches, and reapplying the trim with two new nuts to secure it.

In the case of this Cybertruck, the new nut is leaving a significant gap on the chassis that Tesla should never have felt acceptable to deliver to a customer.

As for the burn or rust mark, the owner speculated that it was a weld mark as they weld the new nut, but there’s no welding required in the fix. Therefore, it’s not clear what happened, but there’s clearly a mark where the new nut is located.

Here’s a video of the process:

Electrek’s Take

Tesla is lucky. Many of its owners, especially with newer vehicle programs, like the Cybertruck, are early adopters who don’t mind dealing with issues like this.

However, this is a $80,000 to $100,000 vehicle, and most people expect a certain level of service with those vehicles.

You can’t have a remedy for a manufacturing defect that results in panel gaps and marks like this. It shouldn’t be acceptable, and Tesla shouldn’t feel good about giving back a vehicle like that to a customer.

On top of all of this, this is a pain for Cybertruck owners with wraps. They are going to have to rewrap the trim and it doesn’t look like Tesla is going to cover that.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Bitcoin-related startup deals soared in 2024 alongside crypto prices, research shows

Published

on

By

Bitcoin-related startup deals soared in 2024 alongside crypto prices, research shows

Romain Costaseca | Afp | Getty Images

As crypto prices rallied to record highs last year, venture investors piled into new bitcoin-related startups.

The number of pre-seed transactions in the market climbed 50% in 2024, according to a report published Thursday from Trammell Venture Partners. The data indicates that more entrepreneurs entered the bitcoin arena despite a cautious funding environment for the broader tech startup universe.

Bitcoin more than doubled in value last year, while ethereum rose by more than 40%. Early in the year, the Securities and Exchange Commission approved exchange-traded funds that invest directly in bitcoin and then extended the rule to ethereum, moves that brought a wider swath of investors into the market. The rally picked up steam in late 2024 after Donald Trump’s election victory, which was heavily funded by the crypto industry.

The early-stage startup boom dates back several years. According to the Trammell report, the number of pre-seed deals in the bitcoin-native category soared 767% from 2021 to 2024. Across all early-stage funding rounds, nearly $1.2 billion was invested during the four-year period.

“With four consecutive years of growth at the earliest stage of bitcoin startup formation, the data now confirm a sustained, long-term venture category trend,” said Christopher Calicott, managing director at Trammell, in an interview.

Venture capital broadly has been slow to rebound from a steep drop that followed a record 2021. Late that year, inflation started to jump, which led to increased interest rates and pushed investors out of risky assets. The market bounced back some in 2024, with U.S. venture investment climbing 30% to more than $215 billion from $165 billion in 2023, according to the National Venture Capital Association. The market peaked at $356 billion in 2021.

Trammell’s research focuses on companies that build with the assumption that bitcoin is the monetary asset of the future and use the bitcoin protocol stack to develop their products.

Read more about tech and crypto from CNBC Pro

The numbers weren’t universally positive for the industry. Across all rounds as high as Series B, the total capital raised declined 22% in 2024.

But Calicott said he’s looking at the longer-term trend and the increase in the number of pre-seed deals. He said the renewed interest in building on blockchain is largely due to technical upgrades and increased confidence in bitcoin’s long-term resilience.

“Serious people no longer question whether bitcoin will remain 15 or 20 years into the future,” he said. “So the next question becomes: Is it possible to build what the founder is trying to achieve on bitcoin? Increasingly, the answer is yes.”

Trammell has been investing in bitcoin startups since 2014 and launched a dedicated bitcoin-native VC fund series in 2020. Its portfolio includes companies like Kraken, Unchained, Voltage and Vida Global.

Recent reports show momentum in crypto startup funding more widely. In February, crypto VC deals topped $1.1 billion, according to data and analytics firm The Tie.

PitchBook forecasts that crypto VC funding will surpass $18 billion in 2025, nearly doubling the $9.9 billion annual average from the 2023 to 2024 cycle. The firm expects greater institutional engagement from firms like BlackRock and Goldman Sachs to deepen investor trust and catalyze further capital inflows.

Joe McCann, a former software developer, is launching his third venture fund, and said this one will be “exclusively focused on consumer apps in crypto.”

He draws a direct parallel to the internet’s early days.

“In the 1990s, VCs were investing in physical infrastructure,” said McCann, who runs Asymmetric, a digital asset investment firm managing two hedge funds and two early-stage venture capital funds, with $250 million under management. “Ten years later, it was Groupon, Instagram, Facebook — apps built on top. That’s where we are with Web3 right now.”

Don’t miss these insights from CNBC PRO

American Bitcoin co-founder Eric Trump: Crypto's the 'future of the modern financial system'

Continue Reading

Trending