Connect with us

Published

on

Anyone considering investing in solar panels will of course expect that it will be a while before they have paid for themselves producing valuable electricity. How long it will take to reach break even depends on many factors: The initial price of the system including full installation, the longevity of the hardware components of the system itself, the price rate structure of the utility energy provider including the grid operator, taxes on both sell and buy rates, whether you opt to include battery storage, and how much the system changes the value of the building on which the it is installed. Of course you could have a situation where panels are just installed and you pay on a monthly basis without actually owning the system in which case none of the following matters, except maybe the electric vehicle bits.

A Typical Solar Installation

To be honest, the overall question of this article is in reality impossible to answer accurately for any given system, but since I’ve had my solar panels for exactly 10 years know, I can at least provide some data for you to look at. These basic data of how much electricity is generated is useful for making more precise calculations for your local pricing structure, and thus help you forecast how long a given system you are interested in would be able to pay for itself. But first, some specifications on my system:

  • 16 panels with a total peak capacity of 4 kWp (I have only come close to this output at noon on very cold and windy summer days).
  • 2 inverters capable of 2 kW throughput each (at the time this was cheaper than 1 single 4 kW inverter and would make it easier to install an extra 2 kWp had I needed it).
  • Price including all hardware, installation, and tax credit (in 2011 the labour cost was deductible in Denmark): 100,000 DKK ($16,000). A similar system price today 10 years later: 50,000 — 70,000 DKK ($8,000 — 11,000) depending on local tax credits.
  • Geographical attributes: Panels facing south at a 30 degree angle, latitude and longitude (Decimal degrees): 56.3332, 10.3826.

Why not 6 kW, which is the largest allowed grid connected system on private property in my area? Well, although it would easily fit on my roof, I simply could not afford it at the time, and up until I got an electric car it would have more capacity than I needed all things considered.

Things to consider that can have a positive impact utilizing excess energy periods when not having opted for a battery as storage:

  • Fridge and deep freezer with timer.
  • Water heater with timer.
  • HVAC system with timer and zone optimisation.
  • Electric vehicle with timer and rate configuration of charge.
  • Training you own sense of when to use electricity, like vacuuming and washing when the sun is shining.

Of the points above I have really only focused on the last two in my everyday routines, and when the electric vehicle came into play, it became a challenge to micromanage the system to optimize the utilization of the system. It just so happened that the local net metering scheme changed at about the same time I purchased my latest EV, and it actually resulted in choosing the larger battery option in the car than I had originally planned. I have described the detailed considerations in an earlier article, and it seems obvious now 2 years later that the larger EV battery was worth it.

My calculations at the time showed that a battery that was 20 kWh larger would pay for itself within 10 years if I could manage the charging just by prioritizing sunshine. Since then I have changed my electricity supplier to one that sells electricity cheaper when wind turbines produce more power, thus making me prioritize charging in windy situations too.

Electricity consumption

First and foremost let’s look at electricity consumption. On average I use 3,000 kWh of electricity every year in my household. I do not use electricity for heating or cooling my house which is why total consumption might seem low. I am connected to district heating, and in Denmark the average outdoor temperature is so low that use of air conditioning systems (HVAC) for cooling is rare.

In the graph below covering a decade of net electricity consumption I have highlighted 4 years:

  • 2010 (blue): No solar panels and no EV. This represents my baseline electricity consumption in a typical full year.
  • 2014 (yellow): Solar panels installed, but still no EV. From March through September I get a surplus of electricity production.
  • 2016 (green): First full year of driving an EV, Nissan Leaf, 25,000 km/year (16,000 miles/year). Electricity consumption doubles to 6,000 kWh, and only in the summer is it possible to balance out consumption and production.
  • 2021 (red): With a Tesla Model 3 long range 75 kWh driving 35,000 km/year (22,000 miles/year) and the yearly net metering out the window, I prioritize free referral code Supercharging in the winter when solar power is low.

When I bought my panels a net metering scheme based on yearly accounting was in effect, but 2 years ago it was replaced with hourly accounting, which left many private solar system owners angry and a class-action lawsuit was initiated but dismissed in court. For nearly 8 years I had conveniently been able to do the math once a year: Subtract kWh consumed from kWh produced and as it turned out the average 3,750 kWh produced each year covered with a comfortable margin the 3,000 kWh consumed.

Getting and EV in the household countered to some degree the disadvantage of net metering on a yearly basis to an hourly basis by making sure to charge as often as possible when the panel generated a surplus of electricity. As mentioned this is the reason I chose a larger range EV than I had planned for. The 20+ kWh of battery capacity in the long range Tesla Model 3 made it easier to charge less often in order to prioritize the sunshine. Not perfect, but still noticeable in terms of freedom of when to charge compared to the low range Nissan Leaf and BMW i3 I had been driving the years prior.

Electricity Production

In order to get a sense of when an investment in a solar power installation will have paid for itself it is of course essential to pay close attention to how much electricity is being generated by the system.

In the graphs below it’s evident that I live relatively far north on the northern hemisphere. Note that this year in red actually deviates quite a lot from the yearly average since May and July usually are the best performing months due to slightly lower average temperatures than June. Solar panels perform best with clear skies and low temperatures preferably with a breeze cooling the panel even more. That’s why you see record outputs in May and July because June is often hotter and more humid. Except this year giving the exact opposite of the norm.

You might think that the sun is up the longest in June and thus should give more power, but since the panels are oriented south and given how far north I live, the sun rises in the north-east and sets in the north-west, sunlight in those very early and late hours do not fall on the panels.

What about degradation? Well, 10 years is of course not a lot to go by, but if the trend in the graph showing total year output persists there might be a couple of percent performance loss per decade. The big risk with panels is more in terms of build quality. If they puncture and moisture gets inside they will fail fast. I chose a high quality brand at the time, even though there where many much cheaper options available. In fact I could have saved 30 — 40% in total costs, but I figured that might cut the lifetime by maybe 50% thinking 4 decades out, and indeed I have spotted many solar panels of the same age and lower price beginning to deteriorate. Since production of silicon based solar panels is an energy intensive process, the longer they sit on the roof producing energy the better.

Note: In Denmark I pay roughly 2.2 DKK/kWh (35 cents/kWh) for grid electricity including taxes. When I sell surplus electricity to the grid I get paid a maximum of 0.3 DKK/kWh (5 cents/kWh) because taxes are not a part of it. No, this is not a typo, there is a lot of tax on energy in this country. This incentifies me to use my generated electricity rather than sell it, which is a challenge with hourly net metering. This is where a home battery and/or EV helps a lot.

Break Even

So, when will the system have paid for itself? Well, in my situation, accounting for the many variable parameters, it looks as if it will be another 2 years before I can say the panels finally produces energy for free. That’s 12 years total, which is not bad considering the panels themselves has a 20 year warranty on construction defects. I expect no less than 30 years of operation.

Checking prices today, I find that an equivalent quality system would cost 60% of what I paid 10 years ago including installation, so investing in solar just makes even more sense now, and more so going forward. Solar panel prices has fallen almost 10× in the last 15 years!

However, it gets more complicated when an EV is included in the mix. You could argue that the EV is part of the system, and that you would now have to look at the combined cost of the solar system and electric vehicle as one single utility since they are practically dependent of each other. I save money on energy to move the car around, and I am able to soak up the surplus energy from the panels much more efficiently.

I could choose to ask the question of when the whole package has paid for it self compared to buying all the electricity from the grid or compare the payback time of the electric vehicle to an equivalent fossil fueled vehicle. In any case solar and EV is without a doubt a win-win.

The share of global solar energy will certainly accelerate with battery storage pricing plummeting. Will I invest in a home battery? I will consider it when energy arbitrage and virtual power plants becomes the norm. In such a scenario it might even be feasible to move the old panels over on top of my garage and replace my whole 50 year old roof with solar tiles. Who knows?

The Takeaway

So, as I said, it’s no easy task to answer the main question of this article, and it is clear that the financial parameters change all the time, so maybe one should not spend too much time trying to calculate this to perfection, but rather just get on with investing in a solar system and rejoice over the savings from day one. It probably will pay off in the end no matter what.

And remember, it is clear that if you plan to include an EV into the mix sooner or later, a matching installed solar capacity could greatly lower the payback time for the combined financial expenditure, more so the more your driving needs.

Below is a few photos of the installation of my panels 10 years ago:

16 panels each with a peak output of 250 Watts

Panels are configured in 2 strands connected to 2 separate 2 kW inverters

The finished system busy doing its photon to electron magic



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Robinhood is up 160% this year, but several obstacles are ahead

Published

on

By

Robinhood is up 160% this year, but several obstacles are ahead

Florida AG opens probe into Robinhood. Here's the latest

Robinhood stock hit an all-time high Friday as the financial services platform continued to rip higher this year, along with bitcoin and other crypto stocks.

Robinhood, up more than 160% in 2025, hit an intraday high above $101 before pulling back and closing slightly lower.

The reversal came after a Bloomberg report that JPMorgan plans to start charging fintechs for access to customer bank data, a move that could raise costs across the industry.

For fintech firms that rely on thin margins to offer free or low-cost services to customers, even slight disruptions to their cost structure can have major ripple effects. PayPal and Affirm both ended the day nearly 6% lower following the report.

Despite its stellar year, the online broker is facing several headwinds, with a regulatory probe in Florida, pushback over new staking fees and growing friction with one of the world’s most high-profile artificial intelligence companies.

Florida Attorney General James Uthmeier opened a formal investigation into Robinhood Crypto on Thursday, alleging the platform misled users by claiming to offer the lowest-cost crypto trading.

“Robinhood has long claimed to be the best bargain, but we believe those representations were deceptive,” Uthmeier said in a statement.

The probe centers on Robinhood’s use of payment for order flow — a common practice where market makers pay to execute trades — which the AG said can result in worse pricing for customers.

Robinhood Crypto General Counsel Lucas Moskowitz told CNBC its disclosures are “best-in-class” and that it delivers the lowest average cost.

“We disclose pricing information to customers during the lifecycle of a trade that clearly outlines the spread or the fees associated with the transaction, and the revenue Robinhood receives,” added Moskowitz.

Robinhood CEO Vlad Tenev explains 'dual purpose' behind trading platform's new crypto offerings

Robinhood is also facing opposition to a new 25% cut of staking rewards for U.S. users, set to begin October 1. In Europe, the platform will take a smaller 15% cut.

Staking allows crypto holders to earn yield by locking up their tokens to help secure blockchain networks like ethereum, but platforms often take a percentage of those rewards as commission.

Robinhood’s 25% cut puts it in line with Coinbase, which charges between 25.25% and 35% depending on the token. The cut is notably higher than Gemini’s flat 15% fee.

It marks a shift for the company, which had previously steered clear of staking amid regulatory uncertainty.

Under President Joe Biden‘s administration, the Securities and Exchange Commission cracked down on U.S. platforms offering staking services, arguing they constituted unregistered securities.

With President Donald Trump in the White House, the agency has reversed course on several crypto enforcement actions, dropping cases against major players like Coinbase and Binance and signaling a more permissive stance.

Even as enforcement actions ease, Robinhood is under fresh scrutiny for its tokenized stock push, which is a growing part of its international strategy.

The company now offers blockchain-based assets in Europe that give users synthetic exposure to private firms like OpenAI and SpaceX through special purpose vehicles, or SPVs.

An SPV is a separate entity that acquires shares in a company. Users then buy tokens of the SPV and don’t have shareholder privileges or voting rights directly in the company.

OpenAI has publicly objected, warning the tokens do not represent real equity and were issued without its approval. In an interview with CNBC International, CEO Vlad Tenev acknowledged the tokens aren’t technically equity shares, but said that misses the broader point.

JPMorgan announces plans to charge for access to customer bank data

“What’s important is that retail customers have an opportunity to get exposure to this asset,” he said, pointing to the disruptive nature of AI and the historically limited access to pre-IPO companies.

“It is true that these are not technically equity,” Tenev added, noting that institutional investors often gain similar exposure through structured financial instruments.

The Bank of Lithuania — Robinhood’s lead regulator in the EU — told CNBC on Monday that it is “awaiting clarifications” following OpenAI’s statement.

“Only after receiving and evaluating this information will we be able to assess the legality and compliance of these specific instruments,” a spokesperson said, adding that information for investors must be “clear, fair, and non-misleading.”

Tenev responded that Robinhood is “happy to continue to answer questions from our regulators,” and said the company built its tokenized stock program to withstand scrutiny.

“Since this is a new thing, regulators are going to want to look at it,” he said. “And we expect to be scrutinized as a large, innovative player in this space.”

SEC Chair Paul Atkins recently called the model “an innovation” on CNBC’s Squawk Box, offering some validation as Robinhood leans further into its synthetic equity strategy — even as legal clarity remains in flux across jurisdictions.

Despite the regulatory noise, many investors remain focused on Robinhood’s upside, and particularly the political tailwinds.

The company is positioning itself as a key beneficiary of Trump’s newly signed megabill, which includes $1,000 government-seeded investment accounts for newborns. Robinhood said it’s already prototyping an app for the ‘Trump Accounts‘ initiative.

WATCH: Watch CNBC’s full interview with Robinhood CEO Vlad Tenev

Watch CNBC's full interview with Robinhood CEO Vlad Tenev

Continue Reading

Environment

Hyundai and Kia are betting on lower-priced EVs to ride out tariffs

Published

on

By

Hyundai and Kia are betting on lower-priced EVs to ride out tariffs

Korean auto giants Hyundai and Kia think lower-priced EVs will help minimize the blow from the new US auto tariffs. Hyundai is set to unveil a new entry-level electric car soon, which will be sold alongside the Kia EV2. Will it be the IONIQ 2?

Hyundai and Kia shift to lower-priced EVs

Hyundai and Kia already offer some of the most affordable and efficient electric vehicles on the market, with models like the IONIQ 5 and EV6.

In Europe, Korea, Japan, and other overseas markets, Hyundai sells the Inster EV (sold as the Casper Electric in Korea), an electric city car. The Inster EV starts at about $27,000 (€23,900), but Hyundai will soon offer another lower-priced EV, similar to the upcoming Kia EV2.

The Inster EV is seeing strong initial demand in Europe and Japan. According to a local report (via Newsis), demand for the Casper Electric is so high that buyers are waiting over a year for delivery.

Advertisement – scroll for more content

Hyundai is doubling down with plans to introduce an even more affordable EV, rumored to be the IONIQ 2. Xavier Martinet, CEO of Hyundai Motor Europe, said during a recent interview that “The new electric vehicle will be unveiled in the next few months.”

Hyundai-Kia-lower-priced-EVs
Hyundai Casper Electric/ Inster EV models (Source: Hyundai)

The new EV is expected to be a compact SUV, which will likely resemble the upcoming Kia EV2. Kia will launch the EV2 in Europe and other global regions in 2026.

Hyundai is keeping most details under wraps, but the expected IONIQ 2 is likely to sit below the Kona Electric as a smaller city EV.

Hyundai-Kia-lower-priced-EVs
Kia Concept EV2 (Source: Kia)

More affordable electric cars are on the way

Although nothing is confirmed, it’s expected to be priced at around €30,000 ($35,000), or slightly less than the Kia EV3.

The Kia EV3 starts at €35,990 in Europe and £33,005 in the UK, or about $42,000. Through the first half of the year, Kia’s compact electric SUV is the UK’s most popular EV.

Hyundai-Kia-lower-priced-EVs
Kia EV3 (Source: Kia)

Like the Hyundai IONIQ models and Kia’s other electric vehicles, the EV3 is based on the E-GMP platform. It’s available with two battery packs: 58.3 kWh or 81.48 kWh, providing a WLTP range of up to 430 km (270 miles) and 599 km (375 miles), respectively.

Hyundai is expected to reveal the new EV at the IAA Mobility show in Munich in September. Meanwhile, Kia is working on a smaller electric car to sit below the EV2 that could start at under €25,000 ($30,000).

Hyundai-Kia-lower-priced-EVs
Kia unveils EV4 sedan and hatchback, PV5 electric van, and EV2 Concept at 2025 Kia EV Day (Source: Kia)

According to the report, Hyundai and Kia are doubling down on lower-priced EVs to balance potential losses from the new US auto tariffs.

Despite opening its new EV manufacturing plant in Georgia to boost local production, Hyundai is still expected to expand sales in other regions. An industry insider explained, “Considering the risk of US tariffs, Hyundai’s move to target the European market with small electric vehicles is a natural strategy.”

Hyundai-Kia-lower-priced-EVs
2025 Hyundai IONIQ 5 (Source: Hyundai)

Although Hyundai is expanding in other markets, it remains a leading EV brand in the US. The IONIQ 5 remains a top-selling EV with over 19,000 units sold through June.

After delivering the first IONIQ 9 models in May, Hyundai reported that over 1,000 models had been sold through the end of June, its three-row electric SUV.

While the $7,500 EV tax credit is still here, Hyundai is offering generous savings with leases for the 2025 IONIQ 5 starting as low as $179 per month. The three-row IONIQ 9 starts at just $419 per month. And Hyundai is even throwing in a free ChargePoint Home Flex Level 2 charger if you buy or lease either model.

Unfortunately, we likely won’t see the entry-level EV2 or IONIQ 2 in the US. However, Kia is set to launch its first electric sedan, the EV4, in early 2026.

Ready to take advantage of the savings while they are still here? You can use our links below to find deals on Hyundai and Kia EV models in your area.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Blink Charging just threw a lifeline to EVBox Everon customers

Published

on

By

Blink Charging just threw a lifeline to EVBox Everon customers

As EVBox shuts down its Everon business across Europe and North America, EV charging provider Blink Charging is stepping up to offer support to customers caught in the transition.

EVBox’s software arm Everon recently announced it’s winding down operations alongside EVBox’s AC charger business. That’s left a lot of charging station hosts and drivers wondering what comes next. Now, EVBox Everon is pointing its customers toward Blink as a recommended alternative.

Blink says it’s ready to help, whether that means keeping existing chargers up and running or replacing aging gear with new Blink chargers.

“EVBox has played a significant role in the growth of EV charging infrastructure across the UK and Mainland Europe, and we recognize the trust hosts have placed in its solutions,” said Alex Calnan, Blink Charging’s managing director of Europe. “With the recent announcement of Everon’s withdrawal from the EV charging market, it’s natural to have questions about what this means for operations. At Blink, we want to assure Everon customers that we are here to help them navigate this transition.”

Advertisement – scroll for more content

Blink says it’s able to offer advice, replacements, and ongoing network management to make the changeover as smooth as possible.

Everon users who switch to Blink will get access to the Blink Network portal via the Blink Charging app. That opens up real-time insight into charger usage and lets hosts set pricing, manage users, and download performance reports.

“At Blink, our charging technology is future-ready,” added Calnan. “With advancements like vehicle-to-grid technology on the horizon, our chargers are built to support the future of electric vehicles and charging habits.”

The company says its chargers are in stock and ready to ship now for any Everon customers looking to make the jump.

In October 2024, France’s Engie announced it would liquidate the entire EVBox group, which it said posted total losses of €800 million since Engie took over in 2017. EVBox is closing its operations in the Netherlands, Germany, and the US.


The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending