Connect with us

Published

on

The Climate Crisis team on Quora asked me to assess which industries are ahead and behind in terms of dealing with climate solutions. I’d just finished reading Kahneman’s Noise: A Flaw in Human Judgment (strongly recommended), so instead of attempting to provide a multifactorial scoring, I decided to go with a ranking mechanism instead.

And so, my list with color commentary of the major industries which are addressing or challenged to deliver or hostile to climate action, from best to worst.

1. Wind Industry

Wind energy is the biggest new source of low-carbon energy on the planet at present. About 140 GW of capacity with an average capacity factor around 40% was commissioned in 2020, 50% of that in China. As electricity is the future of all energy, being the biggest single provider of new low-carbon electricity pretty much puts you on the top of the heap.

Every MWh of wind energy displaces a MWh of fossil fuel energy with its median 750 kg of CO2 emissions, so last year’s 140 GW of capacity turns into annual CO2 emissions reductions of about 350 million tons of avoided CO2 every year for the next 30 years. Wind energy is the current work horse of CO2 avoidance, hence the reason I’ve spent so much time in the space.

Big providers in order are:

  1. Vestas – Europe
  2. Siemens Gamesa – Europe
  3. Goldwind – China
  4. GE – USA
  5. Envision – China

Hmmm… Europe and China are kicking butt and taking names here.

Ørsted gets an honorable mention in this too. It used to be an oil and gas major. Then it saw the light. Now it’s dumped the carbon blight entirely, and is the biggest offshore wind deployer in the world. Also European. Go Europe!

2. Solar Industry

Solar is the second biggest source of new low-carbon electricity in the world, about 100 GW in 2020, once again 50% in China. So that’s pretty damned skippy, and represents about 150 million tons of avoided CO2 annually for the next 30 years.

And what are the companies there?

  1. LONGi Solar – China
  2. Jinko Solar – China
  3. JA Solar – China
  4. Trina Solar – China
  5. Canadian Solar – China

Yeah, China owns this market. You have to get down to #8 before you find a non-Chinese manufacturer, First Solar from the US.

Which is why there’s this big Sinophobic lobbying push happening in the US and Europe to cast Chinese solar panels as made with coal and slave labor. I wish I was making this up, but WSJ editorials, observation of social media, and a bit of insider knowledge on my part makes it clear to me that this is occurring.

Resist the Sinophobic BS. We have about 3 billion solar panels on the planet right now, and we need a lot more. China is the only scaled manufacturer of solar panels and many other climate action necessities, and is doing a lot better on climate action than western media portrays, especially the right-wing media, so buy Chinese already.


Computer chip

Silicon Carbide, SiC wafer v8.1 OpAmp Chip in Co-fired Alumina Package for High-temperature Application courtesy NASA

After this, the pickings get a bit slimmer, and the ranking gets harder. Nevertheless, I’m going to pick:

3. Electronics

Wait. What? Electronics? Yeah, electronics.

LEDs have caused lighting and video energy consumption to virtually disappear from the radar screen. 75% energy reduction out of the box. Integrated circuits have made virtually every home appliance an energy sipper, not an energy hog. TVs and monitors? Vastly more of them, vastly less energy used.

Our smartphones replace dozens of comparatively high-energy requirement devices from tape recorders to video recorders to landline telephones to printed books to flashlights to newspapers and on and on.

People kvetch about data center energy usage, but it’s absurd how far a kWh of electricity goes in 2021 vs in 1980. Not only is the future of all energy electricity, we’ve become incredibly parsimonious about most of its uses.

Sure there’s pollution and waste. But when it comes to climate change, energy is Satan incarnate, and electronics have vastly reduced how often Satan is hanging around our homes smelling of brimstone and long-chain polymers. The biggest story in overall efficiency is electronics.

4. HVAC — Okay, Heat Pumps

Heating, ventilation, and air conditioning is going through a double revolution. It’s a big honking energy consumer. But it’s shifting more and more to electricity because baseboard heaters and AC are cheap and convenient, and electricity is decarbonizing.

You can’t decarbonize natural gas or oil heat.

But the second revolution is heat pumps. There’s something called the coefficient of performance (COP). It basically says how much heating or cooling you get per unit of energy input. With natural gas or oil, the absolute maximum is a COP of 1. That means 100% of the energy heats the place.

But heat pumps get COPs of 3–5. Wait. That’s 300% to 500% of energy in output as heat or cold! How do we go over unity! Call the Thermodynamics police!

Well, it’s simple. Heat pumps don’t create heat or cold, they pump heat from one place to another. They are air conditioners, but instead of just pumping heat out, they also pump heat in. And they do it with electricity, so as grids decarbonize with wind and solar, heating and cooling of buildings with heat pumps decarbonizes further in lockstep.

And heat pumps and HVAC in general are subject in most major economies to the Kigali Amendment to the Montreal Protocol. The who-what? The Montreal Protocol is the ozone layer saver. It replaced really nasty CFCs with HFCs in refrigerators, air conditioners, and aerosol cans globally, patching up the ozone layer as a result. And HFCs are a bit less warming than CFCs, so that was accidentally good. But a bit less warming still means 1300–14,000 times worse than CO2. Whoops.

The Kigali Amendment, which followed the Paris COP21 meeting a few months later, but in Rwanda, started to fix that. Basically, it said signatories had to start replacing high global warming potential (GWP) HFCs with lower GWP HFCs, HFOs, and CO2. Yeah, carbon dioxide. It’s a coolant when used as a refrigerant, which of course climate change deniers make into a stupidity test.

So modern heat pumps get 3–5 times the energy efficiency, their refrigerants don’t create global warming nearly as much, and they get more virtuous as the grids they are on decarbonize. Win, win, win!

5. Ground Transportation

Yeah, Tesla. And others. And 38,000 km of high speed electrified rail in China. And 430,000+ electric buses in China. And 19,000 km of high-speed rail in Europe. And 50% of all EVs being bought in China. Lots of electrified freight transport in Europe.

Electrified rail percentages by European country

Electrified rail percentages by European country courtesy EU

And lots of transit, e-bikes, e-scooters, e-unicycles, and the like everywhere in the world.

Lots of good stuff happening in ground transportation from a climate perspective, but still a long way to go.


Après nous, le déluge

So yeah, things are going downhill from here on in the rankings. There are some major industries that are poking around the edges, but not getting there rapidly enough.

Boreal forest near Shovel Point in Tettegouche State Park, along the northern shore of Lake Superior in Minnesota. Image courtesy of Kablammo (public domain) via Wikimedia Commons.

6. Forestry

Here’s the deal. Planting a trillion trees will bridge a couple of decades of human emissions. And leaving them alone will enhance long term soil carbon sequestration. Further, cutting down the mature trees and turning them into durable wood products like furniture and load-bearing beams for construction sequesters that carbon for a long time.

So the forestry industry has a big part to play. But it’s not there yet.

Canada and Scandinavia are leading in engineered wood beam construction, with approvals for 12- and 16-story buildings respectively. Think plywood load-bearing beams instead of reinforced concrete.

Canada certainly has a lot of newly planted forests. And a bunch of clear cut ones too. I’ve sat in a clear cut on the way to Tofino, shaken to my core. It’s ugly. And I’ve personally pushed 12,000 seedlings into the ground while being towed on a planting trailer behind a tractor in a single weekend. Much more uplifting.

But they are working on it. Seedling planting by drones is a thing now, although survival rates are currently low. Having met a lot of tree planters, I’m pretty sure that the machines will outperform them eventually, if they aren’t already.

China has planted an area larger than the size of France with more than 40 billion trees since 1990.

Has that sunk in yet?

I’ll repeat it nonetheless. China has planted an area larger than the size of France with more than 40 billion trees since 1990.

That’s the forestry industry in action. Unfortunately, the rest of the world isn’t doing nearly as well as China, and to be clear, China deforested all of that first.

John Deere 9R 490 tractor. Image credit: John Deere Company

7. Agriculture

There’s a lot of ugly and a lot of good in agribusiness.

The land actually under cultivation has barely changed since 1950. We’re feeding vastly more people with the same land area. And the amount of ammonia-nitrogen fertilizer has barely changed since 1950 either.

The population has tripled, but we are feeding them with close to the same land area and close to the same amount of fertilizer. Holy FSM (which I guess would be cannoli)!

Yeah, agribusiness has been totally rocking. Same inputs, massively more outputs.

But still. Agriculture is a big producer of greenhouse gases. And 40% of the total land mass of the world is used for agriculture. That land used to be a carbon sink, but now it’s a carbon emitter.

And ammonia-nitrogen fertilizer sucks from a GHG perspective. The ammonia is made from fossil-fuel derived hydrogen. The fertilizer turns into nitrous oxides with high GWPs. Something like 8x the mass of CO2 is release per pound of fertilizers. Agriculture is in the range of 8–10% of total global GHG emissions annually.

That circle is not yet squared.

However, things are changing, and pretty quickly. Agribusiness is not a conservative, slow moving industry. You don’t triple outputs and maintain inputs since 1950 without being quick to adopt innovations. And now there are three innovations pushing through the global agribusiness world.

The first is precision agriculture. GPS guided, computer-controlled dispensation of seeds, pesticides, water, and fertilizer in precise amounts as needed. Electronics again.

The second is low-tillage agriculture. Leaving the sub-surface soil alone keeps the CO2 in the root system in place longer. And leaving it in place and not disrupting the fungal soil network gives time for the glomalin protein pathway for long term soil carbon capture to work.

The third is biogenetics. Multiple firms are working on making agriculture crops and their biomes more efficient and effective. I spent 90 minutes recently with Karsten Temme, the PhD CEO of PivotBio, which genetically engineers nitrogen-fixing microbes and then brews them in beer vats to spread on fields. 20–25% fertilizer use reduction for 6–7% crop yield improvements. That’s pretty big. And its goal is 100% fertilizer reduction by 2030. (Podcast coming shortly).

Massively more efficient since 1950. And massively less CO2 emissions coming.

8. Air Transportation

Because so much of air travel is international, dealing with emissions is assigned not to flow down targets to countries, but to the International Civil Aviation Organization (ICAO). It’s supposed to be acting to bring global carriers to reduced and zero emissions, but it’s incredibly slow and toothless.

To be clear, low-carbon bio- and synthetic jet fuels have been certified for use in aviation since at least 2011, but outside of a few demonstration efforts, aren’t used.

In part, this is because aviation is a hard target, not a soft one. Planes fly by throwing massive amounts of energy to get and keep high speed air flowing under a lifting surface. Doing that for up to 15 hours (my personal longest flight) is staggering.

But there is hope there. I’ll be speaking with the CEO of Heart Aerospace sometime this month or early next. The company has orders for a 19-seat regional electric plane and reasonable funding on its current round. All of the major aerospace manufacturers are looking at electric and electric hybrid. There’s even ZeroAvia, a hydrogen drivetrain startup that Gates’ Breakthrough Ventures is invested in.

We are a long way from having solved this knotty problem, but there is at least work being done.

Maersk container ship

Image credit: Maersk

9. Water Freight Shipping

We’re already seeing some short haul freight shipping electrifying, and ferries and the like are electrifying rapidly. It’s the medium and long haul shipping which remain untouched.

And they typically run on bunker oil, which is to say one of a hundred different variants of barely refined petroleum products that are below diesel and barely above crude oil. It’s nasty stuff and heavily polluting in addition to its CO2 emissions. As Mark Z. Jacobson points out, they emit a lot of unburned hydrocarbons and soot, black carbon, which has a very high global warming potential.

I spent an hour recently talking with a PhD mechanical engineer who has spent the last four years of his career designing, constructing, installing and certifying the scrubbers that go on these vessels to reduce particulate and chemical emissions down to barely tolerable levels that among other things, pass the visual test with seemingly harmless white smoke coming out of the stacks. Non-trivial and does nothing for the CO2.

Long haul oceanic shipping is one of the only modes of transportation where I consider hydrogen drivetrains to have an actual play.

But oceanic shipping is the worst of the worst of the problems. It’s all under flags of convenience, it’s usually in international waters and it’s a low-margin, competitive business.

DOW CHEMICAL PLANT ON FAR SIDE OF LAKE MICHIGAN
DOCUMERICA: The Environmental Protection Agency’s Program to Photographically Document Subjects of Environmental Concern, 1972 – 1977
Record Group 412: Records of the Environmental Protection Agency, 1944 – 2006

10. Industrial Processes

Industrial processes like cement, steel, and the Solvay process are way behind. They are poking around the edges so far, and there are enormous amounts of industrial commodities being produced in high-carbon approaches. There are bright spots of innovation that have no penetration, like renewably-powered green hydrogen reduction of iron ore into steel foam, and electrochemistry processes that displace the Solvay process for carbonates (look for the CleanTechnica three-part series publishing Aug 14/15 featuring Agora Energy Technologies which covers this). But these are early days. Lots of work to do there.


And then, ugliness ensues.

Shell refinery, image credit: Shell

Oil and gas. Coal. The fossil fuel industry is greenwashing hard and despite its claims, is massively failing to address the most pressing concern of the 21st Century.

Ørsted was mentioned earlier. They got it: oil and gas are destructive coming and going. And they got out. Now they are productive members of society.

The rest of the companies that are still standing after the bloodbath of bankruptcies and mergers of the past decade? Nothingburgers.

Carving off molecule-thin shavings of their emissions to do enhanced oil recovery, push ‘blue’ hydrogen, and promoting it into some vague semblance of green, while lobbying hard with politicians they fund to make it seem like a solution, instead of a continuation of the problem.


Much of industry is responding well to the biggest issue of this century, one we’ve jointly created over the past 300 years. But there is still much work to be done.

And that work requires strong governmental pressure through regulations, carbon taxes and active elimination of the worst emitters. There are elections coming in three major western emitting countries in the next 18 months which will be key: Canada (snap election for Sept 2021, per sources), the US 2022 mid terms, and the Australian federal election. If you aren’t already working in your country to ensure governments focused on climate action are elected, today is the best time to start.

 

 
 

Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Kia’s new PV5 ‘Spielraum’ is the ultimate electric camping van and it’s coming soon

Published

on

By

Kia's new PV5 'Spielraum' is the ultimate electric camping van and it's coming soon

Your next camping trip is about to get an upgrade. Kia just dropped two new electric van concepts based on the PV5. With AI-powered home appliances like a refrigerator and microwave, and even a wine cellar, Kia’s new PV5 “Speilraum” is an electric van built for camping and more.

Meet the Kia PV5 Spielraum: An electric van for camping

Kia wasn’t lying when it said its first electric van would offer something for everyone. At the 2025 Seoul Mobility Show on Thursday, Kia and LG Electronics unveiled two new electric van concepts based on the PV5.

The Spielraum electric vans are built for more than just getting you from one place to another. With LG’s AI-powered home appliances, custom interiors, and a wine cellar, the Speilraum models take the PV5 to the next level.

Kia unveiled two new concept vans, the Spielraum Studio and Spielraum Glow cabin. For those wondering, the term Spielraum is German for “Play Space” or leeway. In other words, Kia is giving you more freedom to move.

Advertisement – scroll for more content

The Studio version is designed as a mobile workspace with LG appliances like smart mirrors and a coffee pot. Using AI, the system can actually determine how long your trip will take and will recommend when to use the appliances.

Even more exciting (at least for the vanlifers out there), the Glow cabin converts the PV5 into a mobile camper van.

With a refrigerator, microwave oven, and added wine cellar (you know, for those long trips), Kia’s electric van is sure to upgrade your next camping trip.

Kia-PV5-camping-van
Kia PV5 Spielraum Glow cabin electric camping van concept (Source: Kia)

Kia and LG signed an MOU and plan to launch production versions of the Spielraum electric vans in the second half of 2026. The South Korean companies are also developing a new series of advanced home appliances and other AI solutions that could be included in the vans when they arrive.

The PV5 will initially be available in Passenger, Cargo, and Chassis Cab setups. However, Kia plans to introduce several new versions, including a Light Camper model.

Kia-PV5-Spielraum-electric-van
Kia and LG Electronics unveil two new PV5 Spielraum concepts (Source: Kia)

At 4,695 mm long, 1,895 mm wide, and 1,899 mm tall, the Kia PV5 passenger electric van is slightly smaller than the European-spec Volkswagen ID.Buzz (4,712 mm long, 1,985 mm wide, 1,937 mm tall).

With the larger 71.2 kWh battery pack, Kia’s electric van offers up to 400 km (249 miles) of WLTP driving range. It can also fast charge (10% to 80%) in about 30 mins to get you back on the road.

Kia will launch the PV5 in Europe and Korea later this year, with a global rollout scheduled for 2026. Ahead of its official debut, we got a closer look at the PV5 on public roads last month (check it out here).

Would you take the PV5 Spielraum Glow cabin for camping? Or are you going with the Studio version? Let us know in the comments.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Tesla Cybertruck’s recall fix is a joke that leaves burn mark and gap

Published

on

By

Tesla Cybertruck's recall fix is a joke that leaves burn mark and gap

Tesla Cybertruck owners are starting to get the fix for the truck’s recent recall related to a falling trim. The fix is ridiculous for a $80,000-$100,000 vehicle as it leaves a weld burn and a panel gap.

Last month, Electrek reported that Tesla had quietly put a containment hold on Cybertruck deliveries.

While the reason was not confirmed at the time, we reported that we suspected that it was a problem with the cantrail, a decorative trim that covers the roof ledge of a vehicle. For the Cybertruck, it consists of the highlighted section below:

A week later, Tesla announced that it recalled all Cybertrucks ever made over an issue with the cantrail: it is falling off the Cybertruck.

Advertisement – scroll for more content

Now, some Tesla Cybertruck owners are starting to receive the “fix” for the recall, but it is quite disappointing for what is a $80,000 to $100,000 vehicle.

A Cybertruck owner in New Jersey was already having issues with his cantrail and had to have his tent system installed, so his truck was already at the service center when the recall happened. He was given back his truck with the fix, but he was disappointed with the results, which left a mark on the cantrail and a significant panel gap. He shared pictures via the Cybertruck Owners Club:

According to the recall notice, the fix is as simple as removing the trim, applying some butyl patches, and reapplying the trim with two new nuts to secure it.

In the case of this Cybertruck, the new nut is leaving a significant gap on the chassis that Tesla should never have felt acceptable to deliver to a customer.

As for the burn or rust mark, the owner speculated that it was a weld mark as they weld the new nut, but there’s no welding required in the fix. Therefore, it’s not clear what happened, but there’s clearly a mark where the new nut is located.

Here’s a video of the process:

Electrek’s Take

Tesla is lucky. Many of its owners, especially with newer vehicle programs, like the Cybertruck, are early adopters who don’t mind dealing with issues like this.

However, this is a $80,000 to $100,000 vehicle, and most people expect a certain level of service with those vehicles.

You can’t have a remedy for a manufacturing defect that results in panel gaps and marks like this. It shouldn’t be acceptable, and Tesla shouldn’t feel good about giving back a vehicle like that to a customer.

On top of all of this, this is a pain for Cybertruck owners with wraps. They are going to have to rewrap the trim and it doesn’t look like Tesla is going to cover that.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Bitcoin-related startup deals soared in 2024 alongside crypto prices, research shows

Published

on

By

Bitcoin-related startup deals soared in 2024 alongside crypto prices, research shows

Romain Costaseca | Afp | Getty Images

As crypto prices rallied to record highs last year, venture investors piled into new bitcoin-related startups.

The number of pre-seed transactions in the market climbed 50% in 2024, according to a report published Thursday from Trammell Venture Partners. The data indicates that more entrepreneurs entered the bitcoin arena despite a cautious funding environment for the broader tech startup universe.

Bitcoin more than doubled in value last year, while ethereum rose by more than 40%. Early in the year, the Securities and Exchange Commission approved exchange-traded funds that invest directly in bitcoin and then extended the rule to ethereum, moves that brought a wider swath of investors into the market. The rally picked up steam in late 2024 after Donald Trump’s election victory, which was heavily funded by the crypto industry.

The early-stage startup boom dates back several years. According to the Trammell report, the number of pre-seed deals in the bitcoin-native category soared 767% from 2021 to 2024. Across all early-stage funding rounds, nearly $1.2 billion was invested during the four-year period.

“With four consecutive years of growth at the earliest stage of bitcoin startup formation, the data now confirm a sustained, long-term venture category trend,” said Christopher Calicott, managing director at Trammell, in an interview.

Venture capital broadly has been slow to rebound from a steep drop that followed a record 2021. Late that year, inflation started to jump, which led to increased interest rates and pushed investors out of risky assets. The market bounced back some in 2024, with U.S. venture investment climbing 30% to more than $215 billion from $165 billion in 2023, according to the National Venture Capital Association. The market peaked at $356 billion in 2021.

Trammell’s research focuses on companies that build with the assumption that bitcoin is the monetary asset of the future and use the bitcoin protocol stack to develop their products.

Read more about tech and crypto from CNBC Pro

The numbers weren’t universally positive for the industry. Across all rounds as high as Series B, the total capital raised declined 22% in 2024.

But Calicott said he’s looking at the longer-term trend and the increase in the number of pre-seed deals. He said the renewed interest in building on blockchain is largely due to technical upgrades and increased confidence in bitcoin’s long-term resilience.

“Serious people no longer question whether bitcoin will remain 15 or 20 years into the future,” he said. “So the next question becomes: Is it possible to build what the founder is trying to achieve on bitcoin? Increasingly, the answer is yes.”

Trammell has been investing in bitcoin startups since 2014 and launched a dedicated bitcoin-native VC fund series in 2020. Its portfolio includes companies like Kraken, Unchained, Voltage and Vida Global.

Recent reports show momentum in crypto startup funding more widely. In February, crypto VC deals topped $1.1 billion, according to data and analytics firm The Tie.

PitchBook forecasts that crypto VC funding will surpass $18 billion in 2025, nearly doubling the $9.9 billion annual average from the 2023 to 2024 cycle. The firm expects greater institutional engagement from firms like BlackRock and Goldman Sachs to deepen investor trust and catalyze further capital inflows.

Joe McCann, a former software developer, is launching his third venture fund, and said this one will be “exclusively focused on consumer apps in crypto.”

He draws a direct parallel to the internet’s early days.

“In the 1990s, VCs were investing in physical infrastructure,” said McCann, who runs Asymmetric, a digital asset investment firm managing two hedge funds and two early-stage venture capital funds, with $250 million under management. “Ten years later, it was Groupon, Instagram, Facebook — apps built on top. That’s where we are with Web3 right now.”

Don’t miss these insights from CNBC PRO

American Bitcoin co-founder Eric Trump: Crypto's the 'future of the modern financial system'

Continue Reading

Trending