Connect with us

Published

on

Agora Energy Technologies just won the 2021 Keeling Curve Prize for Capture & Utilization, sharing it with another firm this year. Earlier this year, it won first prize in the Hello Tomorrow global deeptech competition against 5,000 entrants from 128 countries. Agora’s technology is revolutionary, and the awards are well deserved. They picked up the Asian Alibaba Entrepreneur Fund Award in 2020, and the CEO, Christina Gyenge, PhD, is one of three 2021 Fellows in the Cartier Women’s Initiative science and technology global competition as well. As a result, they’ve been talking to global technology firms, and Canadian trade ambassadors for France and Hong Kong among others.

So, what is their award-winning technology, and what’s so great about it? For those interested in the deep electrochemistry, I recommend reading their peer-reviewed paper on their approach, The carbon dioxide redox flow battery: Bifunctional CO2 reduction/formate oxidation electrocatalysis on binary and ternary catalysts published May 31st, 2021 in the Journal of Power Sources (Impact factor: a very respectable 8.87 in 2021), but otherwise, here’s the low down.

Agora’s technology is a redox flow battery. That tech has been around for a while. NASA was working on them in the 1970s. The first one was stood up at the University of New South Wales, Australia in 1984, using the metal vanadium as a core component of its electrolyte. Commercial variants started appearing in the past decade, all using metals as the basis of their electrolytes. Bill Gates has invested in an iron-based one via Breakthrough, and it’s one of the few of his investments in climate solutions I consider to be a decent choice.

Where do redox flow batteries fit? I have an opinion, having gone deep on energy storage over the past few years, including a series on closed-loop, pumped storage hydro and looking at lithium-ion battery futures with a PhD student of Stanford’s Mark Z. Jacobson, as well as talking with Professor Jacobson directly about storage. In my opinion, lithium-ion in its various incarnations will deal with a lot of 4-8 hour demand management and ancillary grid balancing requirements, including some duck-curve issues. Redox flow batteries will compete a bit for same day storage, depending on the technology, and extend out for 1-3 days or even longer up to several weeks. Closed-loop, pumped hydro storage will mostly take over after 2-3 days and extend out to 2-3 week storage. A lot less storage is required than many people assert, but still a great deal of storage is required, and the solutions will overlap. In other words, redox flow batteries will be a big part of a big market.

Lithium-ion batteries are limited to short-term storage because their energy and power attributes scale in lockstep. The more MWh a lithium-ion battery can store, by definition the more MW it supplies. There are some hacks you can do with that, but effectively you get to a point where you don’t need that many MW at a time, so lithium-ion is unwieldy in the system. Great for demand management with the likely 20 TWh of lithium ion batteries in electric vehicles in the US alone by 2050 by my estimation, but that won’t help much for next day or next week storage.

Redox flow batteries dodge this. They use big tanks of chemicals separate from the bits that transform one type of chemical into another, storing the energy, or transforming it back or into something else, releasing the energy. That separates the power and energy attributes of the battery. You can scale up the MWh storage of the battery as much as you want, while maintaining the same MW of electricity capacity. They share that benefit with closed-loop, pumped storage hydro, but without the necessity to put 30-foot diameter tunnels through miles of rock.

Think of it like a car engine and a gas tank. The gas tank is the energy store, and determines how long you can drive for. The engine provides the horsepower, which says how much work you can do. Energy is MWh. Horsepower is MW. Lithium-ion batteries put both in a single package, and to get more energy, you have to add lots of both energy and power, meaning you end up with too much power a lot of the time. But redox flow batteries separate the gas tank and the engine, just like in car. That means you can get as much energy as you need, with only as much power as you need. And because they are stationary, you can make the gas tank as big as you want.

Not All Redox Flow Batteries Are Created Equal

Most of the technologies were patented decades ago. Except for Agora’s, they all use metals, often toxic ones, and usually expensive ones. They have weaknesses in terms of energy density or durability. The metals used for electrolytes and the semi-precious metals used for catalysts make them capital intensive. Many of the technologies have unsolved challenges. They are batteries, and that’s all they are. Many are good, but aren’t amazing. And they are comparatively expensive.

Then there’s Agora’s solution. First, the team.

The co-founders are Christina Gyenge and Elod Gyenge, both PhDs. Christina is CEO and in addition to her chemical engineering PhD has done post-doctoral work at Stanford and multi-disciplinary work across biology and biological systems chemical and energy engineering. Elod is the President of the company and CSO as well as a professor of chemical engineering at UBC. He is a leader in electrochemical engineering research and has been recognized with numerous international awards and honors. Elod has extensive industrial experience and has collaborated with Ballard and Fortune 500 companies on chemical engineering around fuel cells and related technologies. The Director of R&D at Agora is Dr. Pooya Hosseini-Benhangi. Pooya obtained his PhD at UBC in Elod’s group and has also spent time applying electrochemistry to gold mineral processing as a post-doctoral fellow. The core redox flow battery innovations are protected by patents in various stages of finalization in 52 countries, with the Israeli patent just awarded. Several electrochemical and chemical engineers round out the mix.

Christina and Elod started working in this space in 2012. They have three primary innovations that are unique as far as I am aware. 

The first is that they are using gaseous CO2 in the charging phase in a hybrid gas-liquid redox flow battery. Reversing it in the closed-loop model produces CO2 again, unpacking the energy. A major advantage of this is that CO2 and the other chemicals are cheap, non-toxic and common, unlike the metal-based electrolytes of vanadium and other metal-based redox batteries. As with many fields, paradigms are hard to dig out of, and batteries being metal-based is one of those tough paradigms. The closed-loop battery model doesn’t consume the CO2, but CO2 is very cheap by the ton, $30-$100, making the economics of this approach better than metal-based batteries, where the metals often cost thousands or tens of thousands of dollars per ton. Their work on CO2 gas diffusion exchange is cutting edge, well ahead of most others, and a massive technical differentiator as well as a strong value add.

The second deep insight is their catalyst. It’s a core part of their intellectual capital that they are protecting for a simple reason. The catalyst is a cheap and common substance, overcoming a different challenge for many other flow batteries and fuel cells, which typically use semi-precious metals such as platinum, which typically range from $30 – $60 per gram. While little of the precious metals is used per cell, when you start multiplying by thousands of cells, it starts to add up quickly.

But the biggest one in my opinion is the open-loop model. A closed-loop model transforms the CO2 from one chemistry to another, and then back. In the open-loop model when the energy is extracted, the CO2-based chemicals are transformed to carbonates or bicarbonates.

Why is that important? Well, there are a few reasons. The first is that carbonates and bicarbonates are big business. My assessment sees a $44 billion annual market for the chemicals that Agora’s tech can produce from waste CO2 and clean electricity. The second is that this displaces the Solvay process. I’ve looked at that industrial process, just as I’ve looked at cement production, and Agora’s approach is so much cleaner it’s painful. The Solvay process produces a net 2.74 tons of CO2 per tons of bicarbonates produced in the 1870s chemical process involving ammonia, heating with natural gas, and cooling in different steps. Every box of baking soda you’ve ever bought comes with an invisible 3 boxes of CO2 by mass, in other words. More on this in the next article.

In Agora’s process, lower-cost renewably generated electricity flows in at night or other times of day when it happens to be cheap, the process runs at room temperature, and no ammonia is involved. You could put Agora’s tech in a light-industrial building downtown and no one would notice. The third is that it consumes waste CO2, instead of producing a lot of CO2 as the Solvay process does. This is one of the few carbon usage models that makes fiscal and technical sense, and fits as an industrial component of the future. I know, I’ve spent a lot of time assessing carbon capture and industrial processes’ CO2 footprints.

Lazard unsubsidized levelized cost of storage with Agora's technology annotated

Lazard unsubsidized levelized cost of storage with Agora’s technology annotated

But it’s the combination that’s key. It’s a battery. Shove renewable electricity into it, and get clean electricity back. Lots of tech does that. However, Agora’s tech has excellent energy density, and great durability too. It can store a lot of electricity for the mass and cycle it a lot of times. Using CO2 instead of metals makes it a lot cheaper. And their catalyst being cheap due to the chemistry makes it even cheaper. 

Relative ROI for different battery technologies

Relative ROI for different battery technologies by author

Those basic factors make it cheaper than most other forms of storage automatically. Cheaper to build. Cheaper to operate. Lower cost storage. Agora has done four fiscal case studies with LafargeHolcim for the technology applied to wind energy grid balancing and an integrated low-carbon cement plant of the future, so the numbers have been scrubbed backward and forward. 

And the kicker is the carbonate and bicarbonate production. It consumes waste CO2. It produces useful chemicals. Bicarbonates are in lots of things. Food. Toothpaste. Antacids. And they are worth from $200 – $600 per ton, depending on the chemistry and the purity. Imagine a battery that lasts a long time, eats CO2, and produces useful industrial chemicals. It’s a trifecta. 

Chart of relative carbon neutrality of different battery technologies chart

Chart of relative carbon neutrality of different battery technologies chart by author

These battery technology comparison charts are early and indicative, not late, based on rock solid numbers, or seriously reviewed. I pulled them together based on discussions, but they haven’t been validated. My gut tells me that they are close to right in terms of scale, but there’s more work to do on them. And more variants of these assessments to produce. No wonder Hello Tomorrow, the Keeling Curve Prize Team and the Cartier’s Womens Initiative picked Agora. I saw this 20 months ago. The Agora team saw this close to a decade ago.

Their solution isn’t a thornless bed of roses, of course. 

The CO2 is transformed into an acid on the way through the process into the storage medium, so that requires care in handling. The set of chemicals include bromine variants. While bromine is an essential trace element in human biology, as with dihydrogen monoxide too much is lethal. The toxicity of the bromine is a concern that must be managed. Other alternatives are less efficient.

Technology readiness levels

Technology readiness levels courtesy NASA

They are at lab efficiency levels right now. While projections indicate that they will get over 80% in terms of round-trip storage, this hasn’t been demonstrated. They are at the MVP stage or technology level four, and need to build a scaled prototype. That’s going to take 2-3 years, and another few million dollars.

They aren’t a manufacturing and distribution firm or a chemical commodity firm, but a technical innovation firm. They need a global manufacturing partner and a chemical commodity partner. Firms like that have been knocking on their door a lot in the past couple of years, and a lot more with the various prizes this year.

Agora’s CO2-based redox flow batteries will be a core technology assisting us to bend the Keeling Curve back down. Hello Tomorrow indeed.

Full disclosure. I have a professional relationship with Agora as a strategic advisor and Board observer. I did an initial strategy session with Agora about their redox flow battery technology in late 2019 and was blown away by what they had in hand, and my formal role with the firm started at the beginning of 2021. I commit to being as objective and honest as always, but be aware of my affiliation.

 

 
 

Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla board members officially settle excessive compensation case for nearly $1 billion

Published

on

By

Tesla board members officially settle excessive compensation case for nearly  billion

A judge has officially approved a settlement in a case brought by Tesla shareholders against board members who will now have to return stock, cash, and give up on stock options worth a total of nearly $1 billion.

Let me start this article with a quote from Tesla CEO Elon Musk:

Tesla will never settle a case where we’re in the right, and never contest a case where we’re in the wrong.

Today, Chancellor Kathaleen McCormick approved a settlement agreement between Tesla and all its board members from 2017 to 2020 and the Police and Fire Retirement System of the City of Detroit on behalf of Tesla shareholders over what the shareholders believed to be excessive compensation.

The agreement was first reported in July 2023, but it is only now being officially approved and we learn a few more details.

Shareholders believed that members of Tesla’s board were compensating themselves excessively with hundreds of millions of dollars between 2017 and 2020 when the average compensation of a board member of a S&P500 company is just north of $300,000.

Under the settlement, the board members agree to return to Tesla $277 million in cash, $459 million in stock options and to forgo $184 million worth of stock options awarded for 2021-2023.

That adds up to nearly $1 billion.

The board members include Kimbal Musk, Elon’s brother, Brad Buss, Ira Ehrenpreis, Antonio Gracias, Stephen Jurvetson, all close friends of Elon Musk and people who have financial dealings with Musk outside of Tesla, Linda Johnson Rice, Kathleen Wilson-Thompson, Hiromichi Mizuno and Larry Ellison, the co-founder of Oracle Corp and also a close friend of Musk.

As part of the settlement, Tesla or the board does not admit to any wrongdoing.

Musk didn’t take compensation as part of the board, but he is embroiled in a similar case over his own $55 billion CEO compensation package, which was rescinded by the same judge after she found that it wasn’t negotiated or presented to shareholders in good faith.

The board members who received this “excessive compensation” also happened to be the one who “negotiated” Musk’s CEO compensation package.

The case is heading to the Delaware Supreme Court, as reported earlier today.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Nissan’s Ariya electric SUV takes on the extreme weather in its new test chamber [Video]

Published

on

By

Nissan's Ariya electric SUV takes on the extreme weather in its new test chamber [Video]

Despite how cold it may feel outside, Nissan’s electric SUV has likely been through colder. Nissan is proving its Ariya SUV can handle the extreme weather at its unique new test chamber at its tech center near Detroit. With temperatures ranging from -40 to 176 °F, the Ariya is being pushed to see what it’s made of.

Nissan launched the Ariya, its first electric SUV, in the US in late 2022. Over 13,400 Ariya models were sold in the US in its first sales year, with another nearly 20,000 handed over in 2024.

A few weeks ago, Nissan introduced the 2025 Ariya, starting at just $39,770. It has two battery options, 66 or 91 kWh, good for 216 and 289 miles range. That’s for the FWD models.

You can opt for Nissan’s e-4ORCE AWD dual-motor system for “thrilling acceleration” with up to 389 hp and 442 lb-ft of torque. However, with the added power, you sacrifice some range. The AWD Ariya gets up to 272 miles range.

With many parts of the country seeing frigid temperatures, Nissan says its “Ariya is very well equipped” to combat freezing weather.

Nissan-2025-Ariya-incentives
2025 Nissan Ariya Platinum+ e-4ORCE (Source: Nissan)

The electric SUV was already the first vehicle (EV or gas-powered) to drive from the North to the South Pole in 2023. Now, it’s being put through the paces at Nissan’s tech center outside of Detroit.

It’s currently around 23 °F in Detroit, with a low of 11 °F, but Nissan says it’s even colder in its unique new test chamber. The chamber is located at the Nissan Technical Center North America campus, just outside Detroit.

Nissan-Ariya-chamber
The Ariya in Nissan’s test chamber (Source: Nissan)

Nissan Ariya handles cold weather tests in new chamber

“Our chambers are capable of temperatures ranging from -40 degrees Fahrenheit to 176 degrees Fahrenheit,” Jeff Tessmer, senior manager of Zero Emission Vehicles at Nissan’s tech center, explained.

Nissan tests the Ariya in a test chamber with “far more extreme” temperatures than the typical driver will see. Tessmer said, “We want to test the worst-case scenario so that our customers will still get the same performance in a wide variety of weather conditions.”

One of the biggest goals is to prove the electric SUV’s battery can maintain charge levels even in extreme weather.

Nissan Ariya undergoes extreme cold weather chamber test (Source: Nissan)

Nissan puts it through “cold soak” tests to ensure performance. During a 24-hour cold soak, the Ariya was parked in -4 °F weather with a 17% battery charge. It also wasn’t plugged in or using its battery heater. After the team returned the next day, the electric SUV still had a 17% charge and started up immediately.

The Ariya is equipped with a battery heater that drivers can turn on ahead of time to ensure optimal performance. On hot days, it includes a liquid-cooled system to regulate battery temperatures.

Nissan-2025-Ariya-incentives
2025 Nissan Ariya Platinum+ e-4ORCE interior (Source: Nissan)

Drivers can also use the MYNISSAN app to pre-warm the cabin, check the interior temperature, and schedule charging times. Ansu Jammeh, an engineer on Nissan’s Zero Emissions Engineering team, said the best time to use the heating feature is “when the vehicle is plugged in so that it uses power from the grid instead of the vehicle.”

2025 Nissan Ariya trim Battery
(kWh)
Starting Prices* (MSRP) Range
(miles)
Engage FWD 66 $39,770 216
Engage e-4ORCE 66 $43,770 205
Evolve + FWD 91 $44,370 289
Engage + e-4ORCE 91 $45,370 272
Evolve + e-4ORCE 91 $48,370 272
Platinum + e-4ORCE 91 $54,370 267
2025 Nissan Ariya prices and range by trim (*not including a $1,390 destination fee)

Nissan added a new wireless charging pad across all 2025 Ariya models. The inside features Nissan’s Advanced Drive-Assist setup with dual 12.3″ infotainment and driver display screens formed in a “wave-like” shape.

Other standard features of the 2025 model include wireless Apple CarPlay and Android Auto support, a Head-up display, and a Virtual Personal Assistant. It also includes Nissan’s ProPilot Assist for assisted driving.

Are you ready to check out Nissan’s electric SUV for yourself? We can help you get started. You can use our link to find Nissan Ariya models at the best price in your area today.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

This Florida solar farm is supplying clean energy to 12 cities

Published

on

By

This Florida solar farm is supplying clean energy to 12 cities

Florida’s Rice Creek Solar Energy Center is now online, delivering nearly 75 megawatts (MW) of clean electricity to 12 cities across the state. The solar farm is part of the Florida Municipal Solar Project, one of the largest municipal solar initiatives in the US.

Located in Putnam County, near Palatka, the Rice Creek site is covered with 213,000 solar panels that generate enough power for around 14,000 homes. This marks the third solar site in the Florida Municipal Solar Project, with more on the way.

Twelve utilities are tapping into the clean energy from Rice Creek, including Beaches Energy Services (Jacksonville Beach), Fort Pierce Utilities Authority, Homestead, Keys Energy Services in Key West, Kissimmee Utility Authority, Lake Worth Beach, Mount Dora, New Smyrna Beach Utilities, Newberry, Ocala, Town of Havana, and Winter Park. This is the first solar power project for Havana, New Smyrna Beach, and Newberry.

Jacob Williams, the general manager of the Florida Municipal Power Agency, explained, “By working together, our members and their communities benefit from additional solar-powered energy that’s both cost-effective and carbon-free.”

The FMPA, based in Orlando, coordinates the project, while the 12 municipal utilities – who are also FMPA’s member-owners – purchase the power. Miami-based Origis Energy is the builder, owner, and operator of Rice Creek. According to Origis Energy’s Josh Teigiser, “We are honored to support this FMPA work. Long-term agreements for solar generation, including for Rice Creek Solar, provide a stable rate base contributing to lower and more predictable customers’ bills.”

Construction is already underway on a fourth Florida solar farm, Whistling Duck Solar, in Levy County. The Florida Municipal Solar Project is expected to grow to seven sites in the next few years and will generate a total of around 525 MW of clean energy.

Read more: Ohio’s largest solar farm just came online


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending