Originally published on the NRDC Expert Blog. By Amanda Eaken and Sarah Kline, Federal Transportation Consultant to NRDC.
The Biden administration has set an ambitious climate goal for America: a 50 percent decrease in greenhouse gas (GHG) emissions by 2030. To reach this goal, changing the way we move must be key since transportation is the largest contributor of GHGs in the United States.
Fortunately, cities are already leading the way. My colleagues and I have been working since 2018 with 25 cities as part of the Bloomberg Philanthropies American Cities Climate Challenge. Along with local partners, the cities have made significant strides in adopting climate-friendly transportation policies to encourage people to bike, walk, or use public transit instead of driving.
Cities are the natural leaders as they oversee land use, including the location of electric vehicle (EV) charging stations, and local infrastructure, like streets and sidewalks, and may also provide transit service. But cities cannot tackle the climate crisis alone. The federal government has the tools to support bottom-up climate action and bring solutions to the national scale.
Here are two ways the federal government can help cities accelerate reductions in transportation emissions. In a future installment, I’ll discuss how the federal government can empower more local climate action.
1. Level up federal transit funding to match federal highway funding.
Bus Lanes. Photo by Caroline Yang for NRDC.
One of the most effective ways of reducing emissions is increasing transit use so that more people can get to jobs, schools, health care, and other places without driving. Many of the Climate Challenge cities have taken bold steps. St. Petersburg, Florida, is building the first bus rapid transit (BRT) line in the Tampa Bay Area, which will provide service between downtown and the beach. Charlotte, North Carolina, plans to build a 26-mile Silver Line that links the airport to the region’s light rail system, connecting communities of color to Charlotte’s uptown, thousands of jobs, and many other essential destinations. San Antonio voters passed a ballot measure in 2020 to dedicate a portion of an existing sales tax to expanding transit. Likewise, Cincinnati voters replaced a portion of the city’s earnings tax with a 0.8% increase to the county’s sales tax to fund the Southern Ohio Regional Transit Agency (SORTA) and infrastructure projects. The success of these and other ballot measures demonstrate the growing demand across the country for clean transportation options.
But cities are still limited in what they can deliver, due to the overall low level of funding. They’re forced to build out transit systems at a snail’s pace, one line at a time, with cobbled-together funds, meaning it can take decades to deliver the transit network that residents want. The federal transportation program has exacerbated this problem: For every $4 spent on roads and highways, just $1 has been spent on transit. It’s time for the federal program to level up investments in transit to match highways. That way, cities can realize transit projects and reap the benefits of greener transportation that much sooner.
2. Fund the transition to electric vehicles.
Increasing the use of zero-emission vehicles is one of the most effective tools for cutting emissions. Several cities, including St. Louis, Chicago, Boston, and Indianapolis, have adopted or are exploring EV readiness ordinances to ensure that new homes and buildings are prepared for an EV future.
Orlando, Florida, installed 100 electric chargers, pivoted its municipal light-duty fleet to EVs, and attracted federal funding for 140 EV buses. The city’s utility also hired an EV specialist to oversee incentives for EV adoption programs.
Philadelphia introduced 25 electric buses and is working on a clean fleet plan, while Pittsburgh debuted its first two electric buses and partnered with its electric utility to install two chargers. Charlotte added its first five battery electric buses at Charlotte Douglas International Airport, which will result in an annual decrease of about 50,000 gallons of diesel fuel, saving an estimated $90,000 each year. Los Angeles is in the process of adding 155 electric buses to its fleet.
Though cities are transitioning to electrification, it comes at a price. Purchasing an electric bus — not to mention installing the charging infrastructure — costs more than a diesel bus. Although these upfront costs are recouped over time through lower operating expenses, they can be a burden for strapped local governments. The only federal grant program focused on low- and no-emission bus purchases represents less than half of one percent of the federal transportation program. To accelerate fleet conversions, a significant increase in federal grants for EVs and charging infrastructure is needed, such as the $174 billion proposed by the Biden administration in the American Jobs Plan.
Image by Electrify America.
The Time Is Now
The U.S. Senate just passed a major Bipartisan Infrastructure Bill, and pivoted to an even bigger budget reconciliation package. There is a lot of work to do over the next month, especially with current transportation law expiring on September 30th. These bills should be a one-two punch that helps knock the funding shortfalls in transit and electrification and give cities the tools they need to make immediate and lasting progress in reducing transportation emissions.
Advertisement
Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.
Arevon Energy has kicked off operations at Vikings Solar-plus-Storage – one of the US’s first utility-scale solar peaker plants.
The $529 million project in Imperial County, California, near Holtville, features 157 megawatts of solar power paired with 150 megawatts/600 megawatt hours of battery storage.
Vikings Solar-plus-Storage is designed to take cheap daytime solar power and store it for use during more expensive peak demand times, like late afternoons and evenings. The battery storage system can quickly respond to changes in demand, helping tackle critical grid needs.
Vikings leverages provisions in the Inflation Reduction Act that support affordable clean energy, strengthen grid resilience, boost US manufacturing, and create good jobs.
The Vikings project has already brought significant benefits to the local area. It employed over 170 people during construction, many local workers, and boosted nearby businesses like restaurants, hotels, and stores. On top of that, Vikings will pay out more than $17 million to local governments over its lifespan.
“Vikings’ advanced design sets the standard for safe and reliable solar-plus-storage configurations,” said Arevon CEO Kevin Smith. “The project incorporates solar panels, trackers, and batteries that showcase the growing strength of US renewable energy manufacturing.”
The project includes Tesla Megapack battery systems made in California, First Solar’s thin-film solar panels, and smart solar trackers from Nextracker. San Diego-based SOLV Energy handled the engineering, procurement, and construction work.
San Diego Community Power (SDCP) will buy the energy from the Vikings project under a long-term deal, helping power nearly 1 million customer accounts. SDCP and Arevon have also signed an agreement for the 200 MW Avocet Energy Storage Project in Carson, California, which will start construction in early 2025.
Vikings is named after the Holtville High School mascot, and Arevon is giving back to the local community by funding scholarships for deserving Holtville High students.
Arevon is a major renewable energy developer across the US and a key player in California, with nearly 2,500 MW in operation and more than 1,250 MW under construction.
If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*
FTC: We use income earning auto affiliate links.More.
China’s EV giant BYD is aggressively expanding overseas. As it finalizes plans for yet another EV manufacturing plant, this time in Cambodia, BYD will set up shop next to newly opened Ford and Toyota facilities.
BYD’s impressive growth streak is not slowing down. In October, BYD sold over 500,000 new energy vehicles (NEVs), its fifth straight record sales month and the first time it has crossed the half-million mark in a single month.
With China’s auto market becoming flooded with low-cost competitors, BYD is looking to key overseas markets to drive growth.
After opening its first plant in Thailand earlier this year, a booming EV region, BYD plans to open up shop in another major Southeast Asian market.
According to Khmer Times, BYD is nearing a deal to establish a new EV manufacturing plant in Cambodia. Prime Minister Hun Manet said on Wednesday that the Council for the Development of Cambodia (CDC) is in the final stage of negotiations with BYD to build a new electric vehicle facility in the region.
“We may be aware that BYD is a giant Chinese company specialising in EV production, comparable to Tesla, the largest EV manufacturer in the United States,” Mr Hun Manet said at the event.
BYD closes in on deal for a new EV plant in Cambodia
BYD will follow Toyota, which opened an assembly plant in Cambodia in May, and Ford’s first assembly plant in the region, which opened in June 2022.
Cambodia’s prime minister stressed the importance of attracting new investments. With geopolitical tensions rising, many companies are looking to new locations.
Southeast Asia is expected to become a major electric vehicle hub. The Cambodian government unveiled plans earlier this year to raise automotive and electronics exports to over $2 billion while creating more than 22,000 new jobs.
BYD opening a new EV plant would be “excellent news” for Cambodia, Natharoun Ngo Son, Country Director of EnergyLab, told Khmer Times.
An EV manufacturing plant will “provide an excellent opportunity to reskill or upskill the Cambodian workforce” for new higher-paying jobs. EnergyLab is launching a new skills development program early next year to prepare the Cambodian workforce for the auto industry’s shift to EVs.
The news comes after BYD launched its first electric pickup, the Shark PHEV (BYD Shark 6), in Cambodia last month.
BYD is also planning to open EV plants in Mexico, Brazil, Pakistan, Hungary, and Turkey as it competes with Ford and Toyota in the global auto market.
Electrek’s Take
According to a recent Bloomberg report, BYD is quickly catching up to Ford in global deliveries. BYD outsold Ford in the third quarter by around 40,000 units.
While Ford is cutting more jobs in Europe as part of its restructuring, BYD has been on a major hiring spree as it ramps up production to meet the higher demand.
BYD is known for its low-cost EV models, like the Seagull, Dolphin, and Atto 3, but the Chinese auto giant is expanding into pickup trucks, midsize smart SUVs, and luxury EVs.
Ford is well aware of BYD’s rise in the global auto ranks. CEO Jim Farley has warned rivals in the past about losing significant revenue if they cannot keep up with China. Farley said he was shocked by the advanced tech he saw after a trip to China in early 2023.
Although Ford is shifting gears to focus on smaller, lower-cost EVs, it may be too little too late. Ford is developing what’s promised to be one of the most efficient EV platforms in California, but its first model based on it, a midsize electric pickup, isn’t due out until 2027.
Will BYD overtake Ford in the global auto ranks? Let us know what you think in the comments below.
FTC: We use income earning auto affiliate links.More.
Researchers at Canada’s University of Waterloo have developed a new lithium-ion EV battery design that can charge from zero to 80% in just 15 minutes and has a longer lifespan.
The new design also allows batteries to handle up to 800 charging cycles, significantly increasing their lifespan.
Yverick Rangom, a professor in Waterloo’s Department of Chemical Engineering, said, “If we can make batteries smaller, charge faster, and last longer, we reduce the overall cost of the vehicle. That makes EVs a viable option for more people, including those who don’t have home charging stations or who live in apartments. It would also increase the value of second-hand EVs, making electric transportation more accessible.”
The secret sauce here is in the anode, which traditionally relies on graphite. The researchers designed a method to fuse graphite particles together to improve conductivity. This tweak enables lithium ions to move fast without causing typical degradation or safety hazards associated with fast charging.
What’s cool is that they didn’t reinvent the wheel in terms of materials; the team worked with the same lithium-ion components already used in EV batteries today.
“We’re just finding a better way to arrange the particles and providing new functions to the binders that hold them together such as state-of the-art electron, ion, and heat transfer properties,” explained Michael Pope, co-lead of the research and professor at Waterloo’s Ontario Battery and Electrochemistry Research Centre. “This approach ensures that the technology can be scalable and implemented using current production lines, offering a low-cost solution to battery manufacturers.”
The next step? The research team is optimizing the manufacturing process and putting prototypes to the test to gauge industry interest. The goal is to make sure this new battery design isn’t just effective – it has to be scalable and ready for widespread industry adoption.
“It’s crucial that it can be implemented within the existing infrastructure for both battery production and charging stations,” added Rangom, lead researcher for the Battery Workforce Challenge.
The University of Waterloo researchers’ findings are published in the journal Advanced Science.
Due to shifts in solar policy, renters and homeowners in many states are now able to subscribe to a local community solar farm. Community solar typically saves you 5-15% depending on where you live, it’s quick and easy to sign up (no upfront costs), and no solar panels are installed on your property.
Save money and help the environment by utilizing theEnergySage Community Solar Marketplace to explore all the solar farms available to you. They even have dedicated Energy Advisors to answer any questions you have about community solar and help you sign up.Subscribe and save here. –affiliate link*
FTC: We use income earning auto affiliate links.More.