Connect with us

Published

on

A study of the Ophiuchus star-forming complex has offered new insights into the conditions in which our own solar system was born.

The findings of the study were published in the journal Nature Astronomy.

A region of active star formation in the constellation Ophiuchus is giving astronomers new insights into the conditions in which our own solar system was born.

In particular, the study showed how our solar system may have become enriched with short-lived radioactive elements.

Evidence of this enrichment process has been around since the 1970s when scientists studying certain mineral inclusions in meteorites concluded that they were pristine remnants of the infant solar system and contained the decay products of short-lived radionuclides.

These radioactive elements could have been blown onto the nascent solar system by a nearby exploding star (a supernova) or by the strong stellar winds from a type of massive star known as a Wolf-Rayet star.

The authors of the new study used multi-wavelength observations of the Ophiuchus star-forming region, including spectacular new infrared data, to reveal interactions between the clouds of star-forming gas and radionuclides produced in a nearby cluster of young stars.

Their findings indicated that supernovas in the star cluster are the most likely source of short-lived radionuclides in the star-forming clouds.

“Our solar system was most likely formed in a giant molecular cloud together with a young stellar cluster, and one or more supernova events from some massive stars in this cluster contaminated the gas which turned into the sun and its planetary system,” said co-author Douglas N. C. Lin, professor emeritus of astronomy and astrophysics at UC Santa Cruz.

“Although this scenario has been suggested in the past, the strength of this paper is to use multi-wavelength observations and a sophisticated statistical analysis to deduce a quantitative measurement of the model’s likelihood,” he added.

First author John Forbes at the Flatiron Institute’s Center for Computational Astrophysics said data from space-based gamma-ray telescopes enable the detection of gamma rays emitted by the short-lived radionuclide aluminum-26.

“These are challenging observations. We can only convincingly detect it in two star-forming regions, and the best data are from the Ophiuchus complex,” he said.

The Ophiuchus cloud complex contains many dense protostellar cores in various stages of star formation and protoplanetary disk development, representing the earliest stages in the formation of a planetary system.

By combining imaging data in wavelengths ranging from millimetres to gamma rays, the researchers were able to visualise a flow of aluminum-26 from the nearby star cluster toward the Ophiuchus star-forming region.

“The enrichment process we’re seeing in Ophiuchus is consistent with what happened during the formation of the solar system 5 billion years ago,” Forbes said.

“Once we saw this nice example of how the process might happen, we set about trying to model the nearby star cluster that produced the radionuclides we see today in gamma rays,” he added.

Forbes developed a model that accounts for every massive star that could have existed in this region, including its mass, age, and probability of exploding as a supernova, and incorporates the potential yields of aluminum-26 from stellar winds and supernovas.

The model enabled him to determine the probabilities of different scenarios for the production of the aluminum-26 observed today.

“We now have enough information to say that there is a 59 per cent chance it is due to supernovas and a 68 per cent chance that it’s from multiple sources and not just one supernova,” Forbes said.

This type of statistical analysis assigns probabilities to scenarios that astronomers have been debating for the past 50 years, Lin noted.

“This is the new direction for astronomy, to quantify the likelihood,” he added.

The new findings also showed that the amount of short-lived radionuclides incorporated into newly forming star systems can vary widely.

“Many new star systems will be born with aluminum-26 abundances in line with our solar system, but the variation is huge – several orders of magnitude,” Forbes said.

“This matters for the early evolution of planetary systems since aluminum-26 is the main early heating source. More aluminum-26 probably means drier planets,” he added.

The infrared data, which enabled the team to peer through dusty clouds into the heart of the star-forming complex, was obtained by coauthor Joao Alves at the University of Vienna as part of the European Southern Observatory’s VISION survey of nearby stellar nurseries using the VISTA telescope in Chile.

“There is nothing special about Ophiuchus as a star formation region,” Alves said.

“It is just a typical configuration of gas and young massive stars, so our results should be representative of the enrichment of short-lived radioactive elements in star and planet formation across the Milky Way,” he concluded.

The team also used data from the European Space Agency’s (ESA) Herschel Space Observatory, the ESA’s Planck satellite, and NASA’s Compton Gamma Ray Observatory.


Continue Reading

Science

Rare Titan Shadow Transits Will Sweep Across Saturn in Summer 2025

Published

on

By

Rare Titan Shadow Transits Will Sweep Across Saturn in Summer 2025

Saturn’s largest moon Titan will cast its shadow across the planet’s surface in a rare spectacle this summer. Over the coming months, observers on Earth may see a dark “hole” move across Saturn’s disk as Titan passes in front of the planet. This event is tied to a special alignment: roughly every 15 years, Saturn’s rings become edge-on to our view (a ring-plane crossing or equinox). Indeed, in March 2025 the rings briefly vanished as they lined up edge-on, setting the stage for Titan’s shadow to loom large on Saturn’s globe. After this year’s transit season, the configuration won’t recur until about 2040, making these transits uniquely unmissable.

Saturn’s Equinox and Titan’s Transits

According to Space.com, right now Saturn is near its equinox, meaning its tilted rings are edge-on to Earth. This geometry allows Titan’s shadow – a dark spot on Saturn – to sweep across the planet’s face, much like a lunar eclipse but on Saturn. Titan orbits Saturn about every 16 days, so during this alignment we can see its shadow cross Saturn’s disk repeatedly. In fact, roughly ten Titan shadow-transit events are expected during 2025. Three have already occurred (most recently on June 16), and seven more are forecast from July through early October 2025. When visible, each transit looks like a moving dark spot (a “hole”) on Saturn’s bright disk.

Viewing the Titan Shadow Transits

These transits are faint and require planning. A good telescope (at least 200× magnification) is needed to see Titan and its shadow. For viewers in North America, Saturn will be low in the pre-dawn sky during the event dates. According to Sky & Telescope, the remaining 2025 transit dates are July 2, July 18, August 3, August 19, September 4, September 20 and October 6 (local viewing times vary by location).

Early-season events last several hours, but the crossings shorten as the year goes on: by Oct. 6 the shadow is only visible briefly at the exact mid-transit moment. Observers should consult astronomy software and aim for clear skies on those dates, as any clouds or mist will obscure the subtle shadow.

Continue Reading

Science

NASA’s Chandra Reveals Stunning Multi-Wavelength Image of Andromeda Galaxy

Published

on

By

NASA’s Chandra Reveals Stunning Multi-Wavelength Image of Andromeda Galaxy

NASA’s Chandra X-ray Observatory provides a new look at the Andromeda galaxy in this multi-wavelength image that includes X-ray, ultraviolet, optical, infrared, and radio images and illustrates the “collaboration of light” across the spectrum. The structure and future fate of the Milky Way are modelled with the help of Andromeda, which is 2.5 million light years away. This combined image not only shows high-energy radiation from a supermassive black hole but also provides a clear view of the arms and core of M31 in remarkable detail. The light is transformed into a sound with a sonification video, bringing another level of sensation.

Chandra X-ray Data Reveals Black Hole Flares and Dark Matter Legacy in New View of Andromeda

As per NASA’s Chandra team, the X-ray observations — alongside data from ESA’s XMM-Newton, NASA’s GALEX and Spitzer, Planck, IRAS, COBE, Herschel, and more — reveal distinct galactic features. Notably, a flare detected in 2013 from Andromeda’s supermassive black hole showed enhanced X-ray emission. The data also honours astronomer Vera Rubin, whose M31 rotation studies led to the first convincing evidence for dark matter. Rubin is now commemorated on a 2025 U.S. quarter.

Among the release features is a signature sonification, with different categories of light — X-ray, ultraviolet, optical, infrared, and radio — translated into sound tones. Volume is controlled by brightness, pitch by frequency position. The result is a sound map of the galaxy’s internal structure.

The Chandra programme for NASA’s Science Mission Directorate in Washington is managed by NASA’s Marshall Space Flight Centre in Huntsville, Alabama. Chandra’s overseer is the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts.

With this updated M31 panorama in hand, astronomers are in for a beautiful sight, but the broader population is also treated to a sight and sound experience that transports us to our Milky Way’s closest galactic neighbour.

Continue Reading

Science

Could These Meteorites Be from Mercury? New Research Hints at Rare Discovery

Published

on

By

Could These Meteorites Be from Mercury? New Research Hints at Rare Discovery

Scientists have observed whether the meteorites can reach Earth from Mercury. Over thousands of meteorites from Mars and the Moon have been observed, but none have been from Mercury, despite it being a nearby rocky planet. A new study revealed Icarus suggests two meteorites, Ksar Ghilane 022 and Northwest Africa 15915, could belong to Mercurian origin. Such a kind of meteorite can offer a realistic opportunity to study the material of the surface of the planet, if the technical challenges and the cost of sending a spacecraft to Mercury are met.

New Meteorite Samples Show Strong Similarities

As per the new studies reported to Physics.org , Meteorite NWA 7325 and aubrites in the past were considered to be possibly from Mercury. However, the mineral composition of their samples has inconsistencies with the known surface data from the Messenger mission of NASA. Aubrites formed on a planet similar in size to Mercury, lacking spectral and chemical similarities, and further weakened as Mercurian fragments.

Ksar Ghilane 022 and NWA 15915, the new samples, share many traits of Mercury crust, with olivine, oldhamite, pyroxene, and minor albitic plagioclase. The oxygen composition of these matched with the aubrites, signalling a similar planetary origin and putting them among strong Mercurian members.

Key Differences Raise Scientific Questions

There are key differences even after that, and the two meteorites contain very little plagioclase than on the Mercury surface, and are about 4,528 million years older than Mercury’s surface material. If they are from Mercury, there is a possibility that they can represent an ancient crust which is no longer visible on the planet.

Future Missions and Scientific Verification

Relating a meteorite to a particular planet is quite difficult without direct samples. BepiColombo missions are orbiting Mercury currently, and can offer valuable insights to confirm meteorites source. Mercurian meteorites can get valuable insights into the formation, composition and history of the planet. There are further findings to be presented at the Meteoritical Society Meeting 2025 in Australia.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Redmi K80 Ultra With Dimensity 9400+ SoC, 7,410mAh Battery Launched: Price, Specifications



Telegram Bot Reportedly Spotted Selling Sensitive Personal Data of Indian Users

Continue Reading

Trending