Connect with us

Published

on

The global industry is responsible for about 3.1% of global CO2 emissions, and that number goes up when you consider black carbon emissions, as the soot and unburned hydrocarbons have a 20-year global warming potential (GWP) of 4,470, and a 100-year GWP of 1,055–2,240. Yes, our Amazon purchases and salads come with a carbon debt.

So what is Maersk doing? It has ordered 8 post-Panamax container ships able to carry 15,000 containers each from South Korea’s Hyundai Heavy Industries, with delivery scheduled for 2024. The ships will be able to burn methanol or bunker fuel in their engines. The methanol is supposed to be carbon-neutral.

However, Maersk runs over 700 ships, so the 8 ships powered by methanol drive trains represent about 1% of its fleet. Not exactly getting rid of bunker fuel rapidly.

Methanol is interesting as a fuel choice. It’s made from natural gas via one of the steam reformation processes, similar to hydrogen in that regard. About a ton of CO2 is produced for every ton of methanol that’s produced, and right now 0% of that is captured. When a ton of methanol is burned, another 0.6 tons of CO2 is emitted. Maersk’s press release talks about carbon-neutral methanol, which suggests using flue carbon capture and follow-on sequestration of the CO2 produced in the steam reformation process.

Bubble diagram of scale of CO2 problem versus capture and use

Bubble diagram of scale of CO2 problem versus capture and use by author

As I’ve published extensively on global carbon capture and sequestration schemes, I’m confident in saying that approaching 0% of CO2 from methanol manufacturing from natural gas and burning as a fuel will be captured, used, and sequestered in the future.

The energy density of methanol is interesting too. The energy density of bunker fuels is about the same as the diesel cited in the linked source. Methanol requires a lot more space and weight on a ship for the same kilometers traveled than traditional fuels.

Running at the cruising speed of 20–25 knots, a Panamax container ship will use about 63,000 gallons of marine fuel every single day. Assuming US gallons (they are smaller, so this is the conservative choice), that’s about 240 tons of fuel a day with diesel or bunker oil. Freighter ships average 40–50 days of travel, although some of that is at lower speeds where fuel consumption drops dramatically. Assuming 40 days, that’s close to 10,000 tons of fuel.

For methanol, basically double that to 20,000 tons of fuel, and comparably less cargo space. Methanol from natural gas with no carbon capture costs over double what bunker fuel does too, over $1 per gallon compared to around $0.50 per gallon.

That means that the same journey will cost 4 times as much in fuel costs, and emit a bunch of CO2 as well.

What methanol does provide is a cleaner-burning fuel. Bunker fuel is nasty stuff, and ships typically get the cheapest, lowest grade, barely refined crap that they can buy. Black carbon — soot and unburned hydrocarbons — is a major pollutant and has an enormous global warming potential as noted above. Vastly less black carbon from methanol than bunker fuel. Ditto sulfur, which is another noxious substance from ships with acid rain implications. Finally, there is high global warming potential nitrous oxide, which is much lower than with bunker fuel.

Right now ships have scrubbers that capture a bunch of the sulfur, particulates, and nitrous oxide, at least when they are operating. Having spoken to an engineer who designs, builds, and installs them on ships, a big focus is on getting the smokestack emissions to look white, like water vapor. The appearance of cleanliness, if not actual cleanliness.

CO2 still gets emitted, however. The CO2 per unit of methanol burned is about 40% of bunker fuel, however, since you need to burn twice as much of it to get the same energy, it’s about 80% of emissions. This isn’t a CO2 saving that’s worth writing home about if the methanol is made from natural gas. It’s more of a value proposition if the CO2 is captured from flue gas or the air or vegetation, but that leads to the very high cost of “green,” synthetic methanol.

It’s possible to manufacture methanol that’s green-ish. You could capture CO2 from somewhere, crack water with electricity to create the hydrogen, and then merge them into methanol. I went deep on this a couple of years ago when looking at Carbon Engineering, a direct air capture fig leaf for various fossil fuel companies.

Table of green methanol manufacturing

Table of green methanol manufacturing by author

That turns out to be close to $3 per gallon solely for manufacturing cost in the best case scenario, compared to the just over $1 for natural gas-sourced methanol. Instead of 4x costs for a journey for fuel, it would be 12x costs.

Let’s put this in perspective. Today with the cheapest bunker fuel that you can get, fuel costs represent 50% to 60% of operational costs. Methanol from natural gas without carbon capture makes that about 80%. Methanol from natural gas with carbon capture would make it approach 90%. Green methanol makes it well over 90%.

So will the shipping world sit up and take notice of Maersk buying 8 methanol powered ships? Yes, they will. They know the math and economics much better than I do, as they live it every day. They know that the 8 ships represent a fig leaf for Maersk. They will note that the ships are dual fuel, able to run on methanol or on bunker fuel, and will know that outside of demonstration runs, Maersk will operate them entirely on bunker fuel for the vast majority of their service life.

They will likely be glad that Maersk is doing PR for the global shipping industry. And there won’t be a big lineup for South Korea’s Hyundai Heavy Industries services to build more of them at 10–15% markups on normal ship construction costs.

Long-haul shipping remains a hard problem for decarbonization. Maersk’s purchase isn’t going to address it. The roughly $150 million extra that it paid for the 8 ships is about 0.4% of Maersk’s annual revenues, or about 1.5% of its expected 2021 profits. This is in the range of expenditures by fossil fuel majors on carbon capture, which is to say PR fig leaf territory, and the ships will undoubtedly run on bunker fuel, not methanol, for the vast majority of their freight miles.

Featured image credit: Maersk

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Stig drifts 2,000 hp electric Ford Supervan around Top Gear test track [video]

Published

on

By

Stig drifts 2,000 hp electric Ford Supervan around Top Gear test track [video]

The Top Gear TV show might be over, but its tamed racing driver – a masked, anonymous hot shoe known only as “the Stig” – lives on … and his latest adventure involves pitching the 1,400 hp electric Ford SuperVan demonstration vehicle around the famed Top Gear test track. Sideways.

Whether we’re talking about record lap times at hallowed motorsports grounds like Bathhurst or the Hillclimb at the Goodwood Festival of Speed, we’ve been covering the 1,400 hp SuperVan project for some time – but the big boxy Transit-ish racing van with hypercar-slaying performance never seems to get boring.

In this video from the official Top Gear YouTube channel (is Top Gear just a YouTube show, now?), the boxy Ford racer seems to have sprouted an additional 600 peak horsepower in its latest “4.2” iteration, for a stout 2,000 hp total. For his (?) part, the Stig puts all of those horses to work in what appears to be a serious attempt to take the overall track record.

I won’t spoil the outcome for you, but suffice it to say that even the most die-hard anti-EV hysterics will have to admit that SuperVan is a seriously quick machine.

SuperVan 4.2: How fast can a 2000 hp transit go?

[SPOILERS AHEAD] Even with 2,000 hp, instant torque, and over 4,000 lbs. of aerodynamic downforce, the SuperVan wasn’t able to beat the long-standing 1st and 2nd place spots held by the Renault R24 (a legit Formula 1 race car) and the Lotus T125 Exos (a track-only special that sure looks like a legit Formula 1 race car), but after crossing the line with a time of 1:05.3, the Ford claims third place on the overall leaderboard.

That 3rd place is likely to be a permanent spot on Top Gear‘s leaderboard, as well – as the track itself is likely to be demolished somewhat sooner than later.

You can check out the video (above) and watch the whole segment for yourself, or just skip ahead to the eight-minute mark to watch the tire-shredding sideways action promised in the headline. If you do, let us know what you think of Ford’s fast “van” in the comments.

SOURCE | IMAGES: Top Gear.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

First autonomous electric loaders in North America get to work

Published

on

By

First autonomous electric loaders in North America get to work

Swedish multinational Sandvik says it’s successfully deployed a pair of fully autonomous Toro LH518iB battery-electric underground loaders at the New Gold Inc. ($NGD) New Afton mine in British Columbia, Canada.

The heavy mining equipment experts at Sandvik say that the revolutionary new 18 ton loaders have been in service since mid-November, working in a designated test area of the mine’s “Lift 1” footwall. The mine’s operators are preparing to move the automated machines to the mine’s “C-Zone” any time now, putting them into regular service by the first of the new year.

“This is a significant milestone for Canadian mining, as these are North America’s first fully automated battery-electric loaders,” Sandvik said in a LinkedIn post. “(The Toro LH518iB’s) introduction highlights the potential of automation and electrification in mining.”

The company says the addition of the new heavy loaders will enable New Afton’s operations to “enhance cycle times and reduce heat, noise and greenhouse gas emissions” at the block cave mine – the only such operation (currently) in Canada.

Electrek’s Take

Epiroc announces new approach to underground mining market in North America
Battery-powered Scooptram; image by Epiroc

From drilling and rigging to heavy haul solutions, companies like Sandvik are proving that electric equipment is more than up to the task of moving dirt and pulling stuff out of the ground. At the same time, rising demand for nickel, lithium, and phosphates combined with the natural benefits of electrification are driving the adoption of electric mining machines while a persistent operator shortage is boosting demand for autonomous tech in those machines.

The combined factors listed above are rapidly accelerating the rate at which machines that are already in service are becoming obsolete – and, while some companies are exploring the cost/benefit of converting existing vehicles to electric or, in some cases, hydrogen, the general consensus seems to be that more companies will be be buying more new equipment more often in the years ahead.

What’s more, more of that equipment will be more and more likely to be autonomous as time goes on.

We covered the market outlook for autonomous and electric mining equipment earlier this summer, and I posted an episode exploring the growing demand for electric equipment on an episode of Quick Charge I’ve embedded, below. Check it out, then let us know what you think of the future of electric mining in the comments.

More EVs means more mines, equipment

SOURCE | IMAGES: Sandvik, via LinkedIn.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Contargo logistics adds 20 Mercedes eActros 600 electric semis to fleet

Published

on

By

Contargo logistics adds 20 Mercedes eActros 600 electric semis to fleet

European logistics firm Contargo is adding twenty of Mercedes’ new, 600 km-capable eActros battery electric semi trucks to its trimodal delivery fleet, bringing zero-emission shipping to Germany’s hinterland.

With over 300 miles of all-electric range, the new Mercedes eActros 600 electric semi truck was designed for (what a European would call) long-haul trucking. Now, after officially entering production at the company’s Wörth plant in Bavaria last month, the eActros 600 is reaching its first customer: Contargo.

With the addition of the twenty new Mercedes, Contargo’s electric truck fleet has grown to 60 BEVs, with plans to increase that total to 90. And, according to Mercedes, Contargo is just the first.

The German truck company says it has plans to deliver fifty (50) of the 600 kWh battery-equipped electric semi trucks to German shipping companies by the close of 2024.

Contargo’s 20 eActros 600 trucks were funded in part by the Federal Ministry for Digital Affairs and Transport as part of a broader plan to replace a total of 86 diesel-engined commercial vehicles with more climate-friendly alternatives. The funding directive is coordinated by NOW GmbH, and the applications were approved by the Federal Office for Logistics and Mobility.

Electrek’s Take

Holcim, a global leader in building materials and solutions, has recently made a significant commitment to sustainability by placing a purchase order for 1,000 Mercedes electric semi trucks.
Mercedes eActros electric semi; via Mercedes.

Electric semi trucks are racking up millions of miles in the US, and abroad. As more and more pilot programs begin to pay off, they’re going to lead to more orders for battery electric trucks and more reductions in both diesel demand and harmful carbon emissions.

We can’t wait to see more.

SOURCE | IMAGES: Contargo, via Electrive.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending