Connect with us

Published

on

Courtesy of Pacific Northwest National Laboratory.
By Kelsey Adkisson

As yet another heat wave shattered temperature records in the Pacific Northwest in mid-2021, threats of rolling blackouts rippled throughout the region.

These recurring extreme weather threats offer a sobering reminder that aging energy grids weren’t designed to handle the stress of climate change. Nor were they designed to withstand the energy impact from extreme events like heat waves, droughts, or wildfires, which are predicted to become more frequent and intense, according to Pacific Northwest National Laboratory’s (PNNL’s) Nathalie Voisin, a PNNL Earth scientist who is part of a team working on grid resilience in relation to climate change.

“Even under modest climate change projections, threats of power shortfalls will become more common,” said Voisin.

In the Pacific Northwest, which is dependent on hydropower to help generate electricity, more frequent heat waves, water scarcity, and increased wildfire risk put increased pressure on an overburdened power grid. Currently, over 90% of the western United States is facing drought conditions. One year ago, it was 40%.

To relieve some of that pressure, research teams at PNNL are focused on prevention. They are working to predict future drought scenarios and create hydropower and grid contingency plans, implement smart electricity load controls, manage forests to reduce the impact of wildfire, and place new grid infrastructure, like energy storage or microgrids, where they are needed most.

“When we’re talking about power shortfalls, even small steps add up. Shifting large appliance use, like a high amount of dishwashers or washing machines, from afternoon and evening peak hours to the morning or the night, or increasing thermostats a couple degrees in the summer and using ceiling or floor fans can make a difference,” said PNNL’s Dhruv Bhatnagar, an energy systems engineer.

What high temperatures mean for hydropower

The early summer heat wave of 2021 led to a spike in energy demand that left hydroelectric dam operators with a difficult choice: (1) use water to keep up with the surge, leaving less water for late summer, or (2) buy energy on the open market, often at higher prices and from natural gas.

PNNL modelers like Voisin are working to predict these types of events and the impacts to generation and load, including short-term issues like heat waves or longer-term issues like droughts via efforts like the Department of Energy’s HydroWIRES initiative.

Led by PNNL earth scientists Nathalie Voisin and Sean Turner, the research team used computer simulations to compare the risk of power shortfalls with no climate change versus modest climate change. (Video: Pacific NorthwestNational Laboratory)

PNNL researchers are using advanced modeling to predict droughts and provide grid operators with information for decisions on how to allocate power during extreme events. For instance, to simulate the impact of climate change on the future power grid, researchers used a computer model called GENESYS. Recent results showed that power systems will be affected by multiple stressors simultaneously, and these impacts compound and aren’t just additive.

PNNL is developing drought scenarios to help operators and regulatory agencies with future planning. This includes predicting future drought conditions and the impacts on hydropower and thermoelectric plants, which can then be used to understand the potential impact on grid operations and guide adaptation.

“This information is used to help operators make risk-informed decisions and determine where vulnerabilities may lie. Ultimately, it will help answer the question—given different stressors, will there be enough power to meet the demand and other power grid needs?” said Voisin.

“Will there be enough power to meet the demand?” — Nathalie Voisin, PNNL Earth scientist 

Recently, Voisin and her team evaluated how hydropower operations vary seasonally and annually depending on water availability for the Chelan Public Utility District. For example, they demonstrated that even during a dry summer, when hydropower’s overall generation is limited by low water availability, hydropower maintains its flexibility to support the peak load under extreme events. This highlights the need to better consider the range of services that hydropower can provide to address the resilience of the grid under extreme events.

Wildfire and hydropower

During an above-normal fire season, like what is currently occurring in California, there will likely be impacts on the grid, either through intentional shutoffs to reduce fire risk or loss of infrastructure due to the fire itself.

“The idea is not to stop all wildfires but to work in advance to reduce their risk, and predict areas that are more prone to them,” said PNNL’s Mark Wigmosta, a PNNL environmental engineer. Wigmosta’s work focuses on forest thinning and restoration with the goal of less fuel for fires.

“The idea is not to stop all wildfires but to work in advance to reduce their risk” — Mark Wigmosta, PNNL environmental engineer

Reducing fuel load in highly dense forests may leave more water in streams and can lead to higher, longer-lasting snowpack. This may produce more water throughout the summer dry season.

“This may provide a way to get more water into the system, depending on location,” said Wigmosta. Another grid benefit is that weaker fires are likely to burn less energy infrastructure. For example, between 2000 and 2016, wildfires caused at least $700 million in damages to 40 transmission lines in California. Nationwide costs from wildfires are significantly higher.

After fires burn, there is typically an increase in runoff and sedimentation. Sediment flows downstream, builds up in reservoirs, and “isn’t great for infrastructure, including turbines,” said Wigmosta. Prescribed burns or tree thinning can actually increase flow volumes and improve hydropower operations. And, weaker fires will have less of a negative impact on infrastructure and the grid.

Better technology from buildings to batteries

During peak power demands, like a heat wave, emerging technology offers the potential for consumers to manage or supplement loads. Smart tools, like intelligent load control, automatically manage building energy use during peak electricity demands. PNNL has been working on ways to make buildings more energy efficient, in addition to optimizing the future of hydropower.

Backup or autonomous power sources also offer promise, particularly during emergency situations. Microgrids are self-contained grids that can power key areas, such as hospitals or police stations, during power shortfalls that could occur during extreme events like a wildfire or hurricane. PNNL’s Microgrid Component Optimization for Resilience tool helps streamline the design process for microgrids with the goal of simulating power under a variety of outage conditions.

PNNL is also taking a leadership role in developing new technologies for grid-scale energy storage, which includes a new generation of battery materials and systems and other forms of energy storage. For example, current grid-scale energy storage systems such as pumped storage hydropower use pumps to move water uphill to store renewable energy when demand is low and generate power when demands are high as water flows downhill. PNNL has been working on incremental steps with pumped storage, such as evaluating environmental impacts of newer systems, to enhance future grid resilience or working with international stakeholders to identify strategies to finance and develop new projects. Even concepts like pairing batteries with hydropower are being explored to enhance hydropower’s capabilities and assure reliability during power shortages while reducing environmental impacts.

“Ultimately, we want to prepare for extreme events. Whether it’s through technological innovation, enhancing grid resilience, or supporting long-term planning. We take a holistic approach to tackling these big, long-term challenges to support risk-informed decision-making,” said Voisin.

This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy and Office of Electricity, among other agencies.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

BMW ups the ante with the fastest, most powerful electric maxi-scooter

Published

on

By

BMW ups the ante with the fastest, most powerful electric maxi-scooter

BMW Motorrad’s futuristic electric scooter just got its first real refresh since beginning production in 2021. The BMW CE 04, already one of the most capable and stylish electric maxi-scooters on the market, now gets a set of upgraded trim options, new aesthetic touches, and a more robust list of features that aim to make this urban commuter even more appealing to riders looking for serious electric performance on two wheels.

The BMW CE 04 has always stood out for its sci-fi styling and high-performance drivetrain. It’s built on a mid-mounted liquid-cooled motor that puts out 31 kW (42 hp) and 62 Nm of torque. That’s enough to rocket the scooter from 0 to 50 km/h (31 mph) in just 2.6 seconds – quite fast for anything with a step-through frame.

The top speed is electronically limited to 120 km/h (75 mph), making it perfectly capable for city riding and fast enough to hold its own on highway stretches. Range is rated at 130 km (81 miles) on the WMTC cycle, thanks to the 8.9 kWh battery pack tucked low in the frame.

But while the core performance hasn’t changed, BMW’s 2025 update focuses on refining the package and giving riders more options to tailor the scooter to their taste. The new CE 04 is available in three trims: Basic, Avantgarde, and Exclusive.

Advertisement – scroll for more content

The Basic trim keeps things clean and classic with a Lightwhite paint scheme and a clear windshield. It’s subtle, sleek, and very much in line with the CE 04’s clean-lined aesthetic. The Avantgarde model adds a splash of color with a Gravity Blue main body and bright São Paulo Yellow accents, along with a dark windshield and a laser-engraved rim. The top-shelf Exclusive trim is where things get fancy, with a premium Spacesilver metallic paint job, upgraded wind protection, heated grips, a luxury embroidered seat, and its own unique engraved rim treatment.

There are also a few new tech upgrades baked into the options list. Riders can now spec a 6.9 kW quick charger that reduces the 0–80% charge time to just 45 minutes (down from nearly 4 hours with the standard 2.3 kW onboard charger). Tire pressure monitoring, a center stand, and BMW’s “Headlight Pro” adaptive lighting system are also available as add-ons, along with an emergency eCall system and Dynamic Traction Control.

BMW has kept the core riding components in place: a steel-tube chassis, 15-inch wheels, Bosch ABS (with optional ABS Pro), and the impressive 10.25” TFT display with integrated navigation and smartphone connectivity. The under-seat storage still swallows a full-face helmet, and the long, low frame design means the scooter looks like something out of Blade Runner but rides like a luxury commuter.

With these updates, BMW seems to be further cementing the CE 04’s role at the high end of the electric scooter market. It’s not cheap, starting around €12,000 in Europe and around US $12,500 in the US, with prices going up from there depending on configuration. However, the maxi-scooter delivers real motorcycle-grade performance in a package that’s easier to live with for daily riders.

Electrek’s Take

I believe that the CE 04’s biggest strength has always been that it’s not trying to be a toy or a gimmick. It’s a real vehicle. Sure, it’s futuristic and funky looking, but it delivers on its promises. And in a market that’s still surprisingly sparse when it comes to premium electric scooters, BMW has had the lane mostly to itself. That may not last forever, though. LiveWire, Harley-Davidson’s electric spin-off brand, has teased plans for a maxi-scooter-style urban electric vehicle in the coming years, but as of now, it remains something of an undefined future plan.

Meanwhile, BMW is delivering not just a concept bike but a mature, well-equipped, and ready-to-ride electric scooter that keeps improving. For riders who want something faster and more capable than a Class 3 e-bike but aren’t ready to jump to a full-size electric motorcycle, the CE 04 hits a sweet spot. It delivers the performance and capability of a commuter e-motorcycle, yet with the approachability of a scooter. And with these new trims and upgrades, it’s doing it with even more style.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

I found this cheap Chinese e-cargo trike that hauls more than your car!

Published

on

By

I found this cheap Chinese e-cargo trike that hauls more than your car!

If you’ve ever wondered what happens when you combine a fruit cart, a cargo bike, and a Piaggio Ape all in one vehicle, now you’ve got your answer. I submit, for your approval, this week’s feature for the Awesomely Weird Alibaba Electric Vehicle of the Week column – and it’s a beautiful doozie.

Feast your eyes on this salad slinging, coleslaw cruising, tuber taxiing produce chariot!

I think this electric vegetable trike might finally scratch the itch long felt by many of my readers. It seems every time I cover an electric trike, even the really cool ones, I always get commenters poo-poo-ing it for having two wheels in the rear instead of two wheels in the front. Well, here you go, folks!

Designed with two front wheels for maximum stability, this trike keeps your cucumbers in check through every corner. Because trust me, you don’t want to hit a pothole and suddenly be juggling peaches like you’re in Cirque du Soleil: Farmers Market Edition.

Advertisement – scroll for more content

To avoid the extra cost of designing a linked steering system for a pair of front wheels, the engineers who brought this salad shuttle to life simply side-stepped that complexity altogether by steering the entire fixed front end. I’ve got articulating electric tractors that steer like this, and so if it works for a several-ton work machine, it should work for a couple hundred pounds of cargo bike.

Featuring a giant cargo bed up front with four cascading fruit baskets set up for roadside sales, this cargo bike is something of a blank slate. Sure, you could monetize grandma’s vegetable garden, or you could fill it with your own ideas and concoctions. Our exceedingly talented graphics wizard sees it as the perfect coffee and pastry e-bike for my new startup, The Handlebarista, and I’m not one to argue. Basically, the sky is the limit with a blank slate bike like this!

Sure, the quality doesn’t quite match something like a fancy Tern cargo bike. The rim brakes aren’t exactly confidence-inspiring, but at least there are three of them. And if they should all give out, or just not quite slow you down enough to avoid that quickly approaching brick wall, then at least you’ve got a couple hundred pounds of tomatoes as a tasty crumple zone.

The electrical system does seem a bit underpowered. With a 36V battery and a 250W motor, I don’t know if one-third of a horsepower is enough to haul a full load to the local farmer’s market. But I guess if the weight is a bit much for the little motor, you could always do some snacking along the way. On the other hand, all the pictures seem to show a non-electric version. So if this cart is presumably mobile on pedal power alone, then that extra motor assist, however small, is going to feel like a very welcome guest.

The $950 price is presumably for the electric version, since that’s what’s in the title of the listing, though I wouldn’t get too excited just yet. I’ve bought a LOT of stuff on Alibaba, including many electric vehicles, and the too-good-to-be-true price is always exactly that. In my experience, you can multiply the Alibaba price by 3-4x to get the actual landed price for things like these. Even so, $3,000-$4,000 wouldn’t be a terrible price, considering a lot of electric trikes stateside already cost that much and don’t even come with a quad-set of vegetable baskets on board!

I should also put my normal caveat in here about not actually buying one of these. Please, please don’t try to buy one of these awesome cargo e-trikes. This is a silly, tongue-in-cheek weekend column where I scour the ever-entertaining underbelly of China’s massive e-commerce site Alibaba in search of fun, quirky, and just plain awesomely weird electric vehicles. While I’ve successfully bought several fun things on the platform, I’ve also gotten scammed more than once, so this is not for the timid or the tight-budgeted among us.

That isn’t to say that some of my more stubborn readers haven’t followed in my footsteps before, ignoring my advice and setting out on their own wild journey. But please don’t be the one who risks it all and gets nothing in return. Don’t say I didn’t warn you; this is the warning.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OPEC+ members agree to larger-than-expected oil production hike in August

Published

on

By

OPEC+ members agree to larger-than-expected oil production hike in August

The OPEC logo is displayed on a mobile phone screen in front of a computer screen displaying OPEC icons in Ankara, Turkey, on June 25, 2024.

Anadolu | Anadolu | Getty Images

Eight oil-producing nations of the OPEC+ alliance agreed on Saturday to increase their collective crude production by 548,000 barrels per day, as they continue to unwind a set of voluntary supply cuts.

This subset of the alliance — comprising heavyweight producers Russia and Saudi Arabia, alongside Algeria, Iraq, Kazakhstan, Kuwait, Oman and the United Arab Emirates — met digitally earlier in the day. They had been expected to increase their output by a smaller 411,000 barrels per day.

In a statement, the OPEC Secretariat attributed the countries’ decision to raise August daily output by 548,000 barrels to “a steady global economic outlook and current healthy market fundamentals, as reflected in the low oil inventories.”

The eight producers have been implementing two sets of voluntary production cuts outside of the broader OPEC+ coalition’s formal policy.

One, totaling 1.66 million barrels per day, stays in effect until the end of next year.

Under the second strategy, the countries reduced their production by an additional 2.2 million barrels per day until the end of the first quarter.

They initially set out to boost their production by 137,000 barrels per day every month until September 2026, but only sustained that pace in April. The group then tripled the hike to 411,000 barrels per day in each of May, June, and July — and is further accelerating the pace of their increases in August.

Oil prices were briefly boosted in recent weeks by the seasonal summer spike in demand and the 12-day war between Israel and Iran, which threatened both Tehran’s supplies and raised concerns over potential disruptions of supplies transported through the key Strait of Hormuz.

At the end of the Friday session, oil futures settled at $68.30 per barrel for the September-expiration Ice Brent contract and at $66.50 per barrel for front month-August Nymex U.S. West Texas Intermediate crude.

Continue Reading

Trending