Connect with us

Published

on

Courtesy of RMI.
By Laurie Stone 

As Hurricane Grace and Tropical Storm Henri cause destruction up and down the Atlantic, people living on islands and coastal territories must prepare for an above average hurricane season. In fact, the National Oceanic and Atmospheric Administration has predicted that we could see up to ten hurricanes in the Atlantic in 2021, three to five of which could have winds of 111 miles per hour or greater. These hurricanes wreak havoc on people’s lives, both emotionally and physically. They destroy critical infrastructure, leaving many people without basic services such as electricity and water for prolonged periods of time.

Fortunately, many islands are installing solar photovoltaic (PV) systems—often including batteries—to decrease dependence on volatile fuel imports and provide more reliable power to their residents. However, even PV systems aren’t invulnerable to hurricanes. Over the years, we have found that some PV systems suffer major damage during hurricanes, while others survive and continue producing power. We set out to find out why.

In 2018, we analyzed solar PV systems in the Caribbean after Hurricanes Irma and Maria. We then wrote a report, titled Solar Under Storm, detailing how to build hurricane-resistant ground-mounted PV systems. We followed that with two reports in 2020: a similar report geared toward roof-mounted PV systems and one detailing best practices for policymakers. These reports describing how to build resilient PV systems are making a huge difference in keeping the lights on for people on islands around the world.

Resilience in The Bahamas

Hurricane Dorian devastated The Bahamas in 2019. Since then, the government and utilities have been working hard to deploy reliable and resilient power. And that includes employing the best practices learned from our Solar Under Storm analysis. RMI worked with Bahamas Power and Light to design, develop, and install a solar microgrid on Ragged Island. The 390 kilowatt (kW) microgrid is built to withstand a Category 5 hurricane (with winds of 180 mph) and provides 93 percent of the island’s energy needs. The project was highlighted on CBS’ 60 Minutes.

Another system in The Bahamas built using recommendations from the reports is the 1.1 megawatt (MW) solar-plus-battery microgrid on Highbourne Cay. The microgrid, also built to withstand a Category 5 hurricane, will provide power to up to 100 residents and guests at the island’s resort. It will also save more than 1,650 tons of CO2 emissions annually and pay for itself through diesel savings in just five to six years.

The recommendations are even being used in the largest solar project in The Bahamas to date. The 4 MW solar-plus-battery microgrid on Chub Cay is expected to be complete by mid-September. Chub Cay is a privately owned island that had been powered with diesel generators. However, the Texan owner of the island, who ironically made his money from oil and gas, realized it made financial sense to switch to solar energy to supply 90 percent of the island’s energy. Applying resilience best practices from the reports only increased costs by 5 to 7 percent. This was also a cost-effective investment to ensure that the system survives hurricane-force winds.

“Fortunately, most of these systems have not had to endure a category 5 hurricane after installation. We wouldn’t wish that on anyone,” says Chris Burgess, project director for RMI’s Global South Program. “But we have a lot of data from the surviving systems of Irma and Maria that have already allowed us to conclude that these best practices do work and that these new resilient PV systems will survive severe storms.”

Beyond The Bahamas

Other islands across the Caribbean are also using the best practices described in the reports. For example, Montserrat recently completed a 750 kW microgrid. In the event that the grid goes down, the microgrid will help provide power to a hospital, airport, assisted living apartment complex, and a number of homes in the area.

A 100 kW solar microgrid on the Grenadine island of Mayreau, deployed in 2019 by St. Vincent Electricity Services Limited with help from RMI, serves 28 percent of the island’s electricity demand. It is greatly reducing the island’s energy costs and will ensure electricity is available to critical facilities during storms.

“The Mayreau project was initially specified to withstand Category 4 winds,” says Fidel Neverson, senior project manager for RMI’s Global South Program. “That was before we saw the utter destruction caused by Hurricanes Irma and Maria to ground-mount solar arrays that were built to Category 4 specifications.”

Using best practices from the first Solar Under Storm publication, RMI and the project team completely reengineered the Mayreau solar array to a Category 5 design. “We want to give the Mayreau microgrid the best possible chance of surviving the types of devastating hurricanes that have impacted the region recently so that the island’s residents can enjoy its benefits for years to come,” Neverson adds.

And in Puerto Rico, after Hurricanes Maria and Irma caused the largest blackout in US history, RMI helped the island install solar and battery microgrids on 10 public schools. “All of our procurements require installers to adhere to Solar Under Storm principles,” says Roy Torbert, a principal with RMI’s Global South Program. “The systems on these schools were built to withstand Category 5 hurricane winds. But we’ve also seen many of them continue to provide power after the grid went down due to the earthquakes that ravaged the island in early 2020.”

Helping Develop New Policies and Codes

The third report that RMI produced, Solar Under Storm for Policymakers, emphasized that it is not only installers that have to act on the recommendations. There are many things that governments, regulators, and developers can do to improve the survivability of solar PV systems in the face of severe storms. And many policymakers throughout the Caribbean are taking that to heart. The Organization of Eastern Caribbean States adopted the best practices from the Solar Under Storm reports into its building code. And the Caribbean Development Bank uses the recommendations as part of its underwriting process for the financing of solar projects. 

Three years after we published our first Solar Under Storm report, we are happy to see all of the solar projects that have employed our recommendations. “We discovered that design, workmanship, quality materials, and quality checks were the difference between survival and failure,” said Burgess. “We realized we didn’t need a technical or manufacturing revolution, we just needed to have an eye for detail.”

Fortunately, islands throughout the Caribbean are using those details to prepare their solar systems for the ever-increasing hurricanes. In this way, we can ensure reliable, life-saving power for those who need it most.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Homeowners share surprising, real-world data after installing solar panels

Published

on

By

Homeowners share surprising, real-world data after installing solar panels

Are you wondering what kind of results you’d get if you added a home solar system to your roof? Homeowners are sharing their results online — and the real-world data might surprise you!

In a recent post to r/Solar, a Reddit user going by DontBuyBitcoin shared a screenshot indicating that their newly-installed ~11.5 kW system produced over 1,700 kWh of electricity in October. “Pretty surprised by the production of the system I got,” writes DontBuyBitcoin. “11.48KW. I cant wait to see what JUNE-AUGUST [2026] going to look like 😍 I wish SolarEdge will make their app better looking with more functionality”

Home solar energy chart


1.7 MWh month; via DontBuyBitcoin.

Other Redditors were quick to share in the enthusiasm. “Congratulations!!! Great numbers,” wrote LegalNet4337. “We got 1.6 MWh with a 14.45 kW system. East and West facing panels in SoCal.”

That 1,700 kWh is nothing to sneeze at. Based on the current national average electricity price of about $0.17/kWh (in AUG2025), DontBuyBitcoin’s admittedly large-ish system translates to ~$290 of potential savings. In a higher rate state like Illinois, with a projected 2026 kWh rate that’s closer to $0.18/kWh, that’s ~$306/mo.

Advertisement – scroll for more content

We expect retail electricity prices to residential customers will average 17 cents per kilowatthour (kWh) nationwide in 2025, a 4% increase over 2024, and then rise to approximately 18 cents/kWh in 2026. This rise continues a trend in which residential electricity prices have increased at an average annual rate of 5% each year since the COVID-19 pandemic. The increase in retail electricity prices this year comes as the cost of natural gas to the electric power sector was up more than 40% in 1H25 compared with a year earlier, with similar year-over-year increases forecast for the remainder of 2025. The average cost of natural gas for power generation in our forecast increases another 17% in 2026.

US ENERGY INFORMATION ADMINISTRATION (EIA)

Those are big numbers, but 11-15 kW rooftop solar systems are big. Significantly bigger, in fact, than the US average, ~6.6 kW in 2024 – but you don’t have to have a big system in order to post big numbers. Superior weather conditions and perfect PV panel placement can also get the job done, as another Redditor found.

“The last 2 days we have had perfect weather here in South Florida and I have been able to get over 30 kWh from a 5 kW system with a 3.8 kW inverter. This is the highest I have seen since getting PTO in September,” wrote Redditor dlewis23, who shared another SolarEdge graph. “I am super happy with seeing over 30 kWh in a single day.”

30 kW/day from home solar


Taken altogether, these real-world snapshots prove that whether it’s a modest 5 kW array or a beefy 10+ kW setup, homeowners out in the real world are seeing meaningful, measurable differences from their home solar installations. And, with retail electricity prices projected to keep on rising through the decade, every kilowatt counts.

Electrek’s Take


From Electrek SEP2025 survey.

When we ran our “Why did you choose to go solar?” survey back in September, only 32.6% of respondents chose, “Lowering my monthly utility bills” as their primary motivation to go solar. That result proved, in my mind, that Electrek readers are just better people than most, and seem to be willing to spend a little more to do something positive for their environment and their community.

That said, wasn’t it no less a thinker than Albert Einstein who said, “Compound interest is the most powerful force in the universe” (Google it.)? And, with a 5% rate hike compounding every year from now until the AI and data center bubbles burst, the impact energy rates may have on all our pocketbooks may be enough to put “Lowering my monthly utility bills” back on top.

If and when that happens: be smart, get several quotes, and understand the difference between buying and leasing your PV system (especially if you plan on selling your home in the foreseeable future).

SOURCES: Reddit, EIA; featured image via Tesla.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Volvo set to ditch LiDAR for 2026 – and Luminar is BIG mad

Published

on

By

Volvo set to ditch LiDAR for 2026 – and Luminar is BIG mad

It seems like the writing was already on the wall last week when Volvo moved to make its Luminar-supplied LiDAR system an option – there are now reports that the Swedish car brand is set to ditch LiDAR tech entirely in 2026.

In a recent SEC filing following a missed interest payment on its 2L notes, Luminar confirmed that Volvo’s new ES90 and EX90 flagship models (along with the new Polestar 3) would no longer be offered with LiDAR from Luminar. The move signals a full reversal on the safety tech that had started as standard equipment, then became an option, and is now (according to reports from CarScoops) gone altogether.

In a statement, a Volvo Cars USA spokesperson added the decision was reportedly made, “to limit the company’s supply chain risk exposure, and it is a direct result of Luminar’s failure to meet its contractual obligations to Volvo Cars.”

This is what Luminar had to say about the current, icy state of the two companies’ relationship as of the 31OCT filing:

Advertisement – scroll for more content

The Company’s largest customer, Volvo Cars (“Volvo”), has informed us that, beginning in April 2026, Volvo will no longer make our Iris LiDAR standard on its EX90 and ES90 vehicles (although Iris will remain an option). Volvo also informed the Company that it has deferred the decision as to whether to include LiDAR, including Halo (Luminar’s next generation LiDAR under development), in its next generation of vehicles from 2027 to 2029 at the earliest. As a result of these actions, the Company has made a claim against Volvo for significant damages and has suspended further commitments of Iris LiDAR products for Volvo pending resolution of the dispute. The Company is in discussions with Volvo concerning the dispute; however, there can be no assurance that the dispute will be resolved favorably or at all. Furthermore, there can be no guarantee that any claim or litigation against Volvo will be successful or that the Company will be able to recover damages from Volvo.

As a result of the foregoing, the Company is suspending its guidance for the fiscal year ending December 31, 2025.

LUMINAR

On November 14, Luminar confirmed that Volvo had terminated its contract altogether, in a blow that could leave Luminar rethinking its long-term future and planning litigation against its biggest ex-customer.

The news follows a host of significant upgrades to the EX90 that include a new, more dependable electronic control module (ECM) and 800V system architecture for faster charging and upgraded ADAS that improves the automatic emergency steering functions and Park Pilot assistant.

Electrek’s Take


You can’t spend years telling everyone you’re miles ahead because you have LiDAR, then ditch LiDAR, and pretend no one is going to call you out on it. They had better hope they don’t up on Mark Rober’s YouTube channel doing a Wile E. Coyote impression (above).

That said, it’ll be interesting to see if ditching the LiDAR has a negative impact there. Or, frankly, whether ditching the LiDAR and its heavy compute loads will actually help mitigate some of the EX90’s niggling software issues. It could go either way, really – and I’m not quite sure which it will be. Let us know which way you think it’ll go in the comments.

SOURCE: Luminar, via SEC filing; featured image by Volvo.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

John Deere electric riding mower gets removable batteries from EGO

Published

on

By

John Deere electric riding mower gets removable batteries from EGO

The new John Deere Z370RS Electric ZTrak zero turn electric riding mower promises all the power and performance Deere’s customers have come to expect from its quiet, maintenance-free electric offerings – but with an all new twist: removable batteries.

The latest residential ZT electric mower from John Deere features a 42″ AccelDeep mower deck for broad, capable cuts through up to 1.25 acres of lawn per charge, which is about what you’d expect from the current generation of battery-powered Deeres – but this is where the new Z370RS Electric ZTrak comes into its own.

Flip the lid behind the comfortably padded yellow seat and you’ll be greeted by six (6!) 56V ARC Lithium batteries from electric outdoor brand EGO. Those removable batteries can be swapped out of the Z370RS for fresh ones in seconds, getting you back to work in less time than it takes to gravity pour a tank of gas.

And, because they’re EGO batteries, they can be used in any 56V-powered EGO-brand tools and minibikes for unprecedented cross-brand interoperability. Tools and minibikes that, it should be noted, can be purchased at John Deere dealers across the country.

Advertisement – scroll for more content

The upsell scripts write themselves, kids. And when you start your dialing, tell your prospective customers their new Z370RS Electric ZTrak electric mower lists for $6,499, and if you order now we can bundle it with EGO minibike for the kiddos – just in time for the holidays!

Electrek’s Take


When John Deere launched the first Z370R, Peter Johnson wrote that electrifying lawn equipment needs to be a priority, citing EPA data that showed gas-powered lawnmowers making up five percent of the total air pollution in the US (despite covering far less than 5% of the total miles driven on that gas). “Moreover,” he writes, “it takes about 800 million gallons of gasoline each year (with an additional 17 million gallons spilled) to fuel this equipment.”

It should go without saying, then, that states like California, which are banning small off-road combustion engines, have the right idea.

SOURCE | IMAGES: John Deere.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending