Connect with us

Published

on

Over 10,000 tracking heliostats focus solar energy at the receiver on the 640-foot power tower at the Crescent Dunes Solar Thermal Facility in Nevada. The facility is representative of concentrating solar power modeled in the Annual Technology Baseline. Photo by Dennis Schroeder, NREL.

Article courtesy of NREL.

One of the challenges of aggregating energy data from different sources into studies is knowing whether the data uses consistent assumptions. The Annual Technology Baseline (ATB) resolves this challenge by creating consistent assumptions across all electric generation technology cost and performance data.

The ATB integrates current and projected data for electricity-generation technologies into one user-friendly tool. It is led by the National Renewable Energy Laboratory (NREL), assembled by a team of analysts from the U.S. Department of Energy’s national laboratories and sponsored by the U.S. Department of Energy (DOE). Each year, new data are released, and the 2021 update of the electricity-sector ATB came out in July.

All renewable energy technologies are represented in the ATB. In this Q&A, solar power technology leads and NREL analysts—David Feldman, Chad Augustine, Parthiv Kurup, and Craig Turchi—share their insight on why the ATB is unique and what is new in terms of solar photovoltaics (PV) and concentrating solar power (CSP) in the 2021 update, including new technologies, expanded financial data, and better interoperability with other models.

Does any other resource like the ATB exist?

The ATB was created because there was no existing database with the level of nuance on technology innovation that energy analysts need. As a national laboratory dedicated specifically to renewable energy, NREL partners with Oak Ridge National Laboratory to dive into those nuances for renewable generation technologies. Without the ATB, analysts would have to seek out data in many places and are likely to have inconsistent assumptions.

How does NREL build the data each year?

We compile data from literature and expert surveys, studies, and industry partnerships.

Who are the primary ATB users?

The ATB is for any analyst out there who is trying to model the electric grid, or individual technologies, in the United States or internationally. We get questions from analysts all over the country and the world who want to use this data.

What cost and performance metrics are offered for solar technologies in the ATB?

We report upfront costs, operating costs, system performance, and financing costs for most technologies over a 30-year period. These values are used to calculate a levelized cost of energy (LCOE). Note that, while LCOE is an important metric of comparison between electricity generation technologies, there are other factors, such as the value of the energy, which must also be considered.

Today’s representative CSP technology for the ATB is the molten salt power tower with two-tank thermal energy storage, which drives a Rankine steam cycle. This utilizes molten sodium and potassium nitrate as the heat transfer fluid and the storage media.

How is solar data in the ATB used at NREL?

The solar data goes into NREL’s Standard Scenarios—a suite of forward-looking scenarios of the U.S. power sector to 2050 that are updated annually to support and inform energy analysis—but also any analysis done with the Regional Energy Deployment System (ReEDS) model, as well as many other NREL models.

ReEDS is NREL’s capacity deployment model that is used in many high-impact studies across the laboratory, currently including the Storage Futures Study and upcoming Solar Futures Study.

In the past, solar ATB data has been used in the SunShot 2030, Geothermal Vision Study, and Wind Vision Study. Truly, any sort of big study that NREL does with ReEDS uses ATB as the foundational model input for PV, CSP, and all technologies.

In additional to NREL use, have you seen it used outside of the lab?

Absolutely. Recently, the California Energy Commission and Cal ISO [California System Operator] commissioned modelers to look at the future of their grid. They utilized the ATB for their model inputs to understand impacts of policy with high renewables deployment.

Internationally, organizations like the energy department in Chile have utilized the ATB costs in their scenarios and come to us asking about costs in the market as a validation.

Are there any new features or developments related to solar in the 2021 update?

This year we made the exciting linkage between the ATB and NREL’s System Advisor Model (SAM) so that the costs of the representative CSP plant at the starting point of the projections, or the baseline, are reflected in the SAM model. With this development, people can now dive deep into our assumptions for how we came up with that assessment, down to the number of heliostats. From there, users can change the assumption as they think it should be or customize for their systems like longer storage times or more efficient technologies.

For both PV and CSP, we’ve expanded our resource classes so we have larger representation of how these systems will perform throughout the United States. We also do a better job this year of representing the ongoing operating costs of PV systems, including five new cost categories. That’s a big improvement.

We also added cost and performance metrics for PV-plus-battery storage. Previously, we only had separate PV and battery storage costs, but there is an ever-growing number of PV systems that are coupled with battery storage in the United States. We’re excited to include costs for those systems this year.

What are some trends that you’ve seen over the years in the ATB in terms of cost and performance of solar technologies?

Generally, performance has increased, and cost has decreased, dramatically for PV and overall in CSP. The ATB has shown us there are several paths forward for continued price reduction. In the Standard Scenarios studies, you can see that when price decreases, renewable energy can become a significantly larger share of U.S. electricity generation. When that happens, there is also a lot of opportunity for greater deployment of storage technologies.

Moving forward, how will you continue to improve the ATB?

The DOE recently made a down-selection of what they believe to be the next generation of CSP technologies as part of their Gen3 program, so going forward we would like to see those captured in the ATB with the same fidelity of modeling as the current technologies.

We’d also like to continue to watch the market for PV-plus-battery storage and how those systems are designed and operated to accurately reflect them in the ATB.

Sign up to receive news and updates about the Annual Technology Baseline.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

BMW ups the ante with the fastest, most powerful electric maxi-scooter

Published

on

By

BMW ups the ante with the fastest, most powerful electric maxi-scooter

BMW Motorrad’s futuristic electric scooter just got its first real refresh since beginning production in 2021. The BMW CE 04, already one of the most capable and stylish electric maxi-scooters on the market, now gets a set of upgraded trim options, new aesthetic touches, and a more robust list of features that aim to make this urban commuter even more appealing to riders looking for serious electric performance on two wheels.

The BMW CE 04 has always stood out for its sci-fi styling and high-performance drivetrain. It’s built on a mid-mounted liquid-cooled motor that puts out 31 kW (42 hp) and 62 Nm of torque. That’s enough to rocket the scooter from 0 to 50 km/h (31 mph) in just 2.6 seconds – quite fast for anything with a step-through frame.

The top speed is electronically limited to 120 km/h (75 mph), making it perfectly capable for city riding and fast enough to hold its own on highway stretches. Range is rated at 130 km (81 miles) on the WMTC cycle, thanks to the 8.9 kWh battery pack tucked low in the frame.

But while the core performance hasn’t changed, BMW’s 2025 update focuses on refining the package and giving riders more options to tailor the scooter to their taste. The new CE 04 is available in three trims: Basic, Avantgarde, and Exclusive.

Advertisement – scroll for more content

The Basic trim keeps things clean and classic with a Lightwhite paint scheme and a clear windshield. It’s subtle, sleek, and very much in line with the CE 04’s clean-lined aesthetic. The Avantgarde model adds a splash of color with a Gravity Blue main body and bright São Paulo Yellow accents, along with a dark windshield and a laser-engraved rim. The top-shelf Exclusive trim is where things get fancy, with a premium Spacesilver metallic paint job, upgraded wind protection, heated grips, a luxury embroidered seat, and its own unique engraved rim treatment.

There are also a few new tech upgrades baked into the options list. Riders can now spec a 6.9 kW quick charger that reduces the 0–80% charge time to just 45 minutes (down from nearly 4 hours with the standard 2.3 kW onboard charger). Tire pressure monitoring, a center stand, and BMW’s “Headlight Pro” adaptive lighting system are also available as add-ons, along with an emergency eCall system and Dynamic Traction Control.

BMW has kept the core riding components in place: a steel-tube chassis, 15-inch wheels, Bosch ABS (with optional ABS Pro), and the impressive 10.25” TFT display with integrated navigation and smartphone connectivity. The under-seat storage still swallows a full-face helmet, and the long, low frame design means the scooter looks like something out of Blade Runner but rides like a luxury commuter.

With these updates, BMW seems to be further cementing the CE 04’s role at the high end of the electric scooter market. It’s not cheap, starting around €12,000 in Europe and around US $12,500 in the US, with prices going up from there depending on configuration. However, the maxi-scooter delivers real motorcycle-grade performance in a package that’s easier to live with for daily riders.

Electrek’s Take

I believe that the CE 04’s biggest strength has always been that it’s not trying to be a toy or a gimmick. It’s a real vehicle. Sure, it’s futuristic and funky looking, but it delivers on its promises. And in a market that’s still surprisingly sparse when it comes to premium electric scooters, BMW has had the lane mostly to itself. That may not last forever, though. LiveWire, Harley-Davidson’s electric spin-off brand, has teased plans for a maxi-scooter-style urban electric vehicle in the coming years, but as of now, it remains something of an undefined future plan.

Meanwhile, BMW is delivering not just a concept bike but a mature, well-equipped, and ready-to-ride electric scooter that keeps improving. For riders who want something faster and more capable than a Class 3 e-bike but aren’t ready to jump to a full-size electric motorcycle, the CE 04 hits a sweet spot. It delivers the performance and capability of a commuter e-motorcycle, yet with the approachability of a scooter. And with these new trims and upgrades, it’s doing it with even more style.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

I found this cheap Chinese e-cargo trike that hauls more than your car!

Published

on

By

I found this cheap Chinese e-cargo trike that hauls more than your car!

If you’ve ever wondered what happens when you combine a fruit cart, a cargo bike, and a Piaggio Ape all in one vehicle, now you’ve got your answer. I submit, for your approval, this week’s feature for the Awesomely Weird Alibaba Electric Vehicle of the Week column – and it’s a beautiful doozie.

Feast your eyes on this salad slinging, coleslaw cruising, tuber taxiing produce chariot!

I think this electric vegetable trike might finally scratch the itch long felt by many of my readers. It seems every time I cover an electric trike, even the really cool ones, I always get commenters poo-poo-ing it for having two wheels in the rear instead of two wheels in the front. Well, here you go, folks!

Designed with two front wheels for maximum stability, this trike keeps your cucumbers in check through every corner. Because trust me, you don’t want to hit a pothole and suddenly be juggling peaches like you’re in Cirque du Soleil: Farmers Market Edition.

Advertisement – scroll for more content

To avoid the extra cost of designing a linked steering system for a pair of front wheels, the engineers who brought this salad shuttle to life simply side-stepped that complexity altogether by steering the entire fixed front end. I’ve got articulating electric tractors that steer like this, and so if it works for a several-ton work machine, it should work for a couple hundred pounds of cargo bike.

Featuring a giant cargo bed up front with four cascading fruit baskets set up for roadside sales, this cargo bike is something of a blank slate. Sure, you could monetize grandma’s vegetable garden, or you could fill it with your own ideas and concoctions. Our exceedingly talented graphics wizard sees it as the perfect coffee and pastry e-bike for my new startup, The Handlebarista, and I’m not one to argue. Basically, the sky is the limit with a blank slate bike like this!

Sure, the quality doesn’t quite match something like a fancy Tern cargo bike. The rim brakes aren’t exactly confidence-inspiring, but at least there are three of them. And if they should all give out, or just not quite slow you down enough to avoid that quickly approaching brick wall, then at least you’ve got a couple hundred pounds of tomatoes as a tasty crumple zone.

The electrical system does seem a bit underpowered. With a 36V battery and a 250W motor, I don’t know if one-third of a horsepower is enough to haul a full load to the local farmer’s market. But I guess if the weight is a bit much for the little motor, you could always do some snacking along the way. On the other hand, all the pictures seem to show a non-electric version. So if this cart is presumably mobile on pedal power alone, then that extra motor assist, however small, is going to feel like a very welcome guest.

The $950 price is presumably for the electric version, since that’s what’s in the title of the listing, though I wouldn’t get too excited just yet. I’ve bought a LOT of stuff on Alibaba, including many electric vehicles, and the too-good-to-be-true price is always exactly that. In my experience, you can multiply the Alibaba price by 3-4x to get the actual landed price for things like these. Even so, $3,000-$4,000 wouldn’t be a terrible price, considering a lot of electric trikes stateside already cost that much and don’t even come with a quad-set of vegetable baskets on board!

I should also put my normal caveat in here about not actually buying one of these. Please, please don’t try to buy one of these awesome cargo e-trikes. This is a silly, tongue-in-cheek weekend column where I scour the ever-entertaining underbelly of China’s massive e-commerce site Alibaba in search of fun, quirky, and just plain awesomely weird electric vehicles. While I’ve successfully bought several fun things on the platform, I’ve also gotten scammed more than once, so this is not for the timid or the tight-budgeted among us.

That isn’t to say that some of my more stubborn readers haven’t followed in my footsteps before, ignoring my advice and setting out on their own wild journey. But please don’t be the one who risks it all and gets nothing in return. Don’t say I didn’t warn you; this is the warning.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

OPEC+ members agree to larger-than-expected oil production hike in August

Published

on

By

OPEC+ members agree to larger-than-expected oil production hike in August

The OPEC logo is displayed on a mobile phone screen in front of a computer screen displaying OPEC icons in Ankara, Turkey, on June 25, 2024.

Anadolu | Anadolu | Getty Images

Eight oil-producing nations of the OPEC+ alliance agreed on Saturday to increase their collective crude production by 548,000 barrels per day, as they continue to unwind a set of voluntary supply cuts.

This subset of the alliance — comprising heavyweight producers Russia and Saudi Arabia, alongside Algeria, Iraq, Kazakhstan, Kuwait, Oman and the United Arab Emirates — met digitally earlier in the day. They had been expected to increase their output by a smaller 411,000 barrels per day.

In a statement, the OPEC Secretariat attributed the countries’ decision to raise August daily output by 548,000 barrels to “a steady global economic outlook and current healthy market fundamentals, as reflected in the low oil inventories.”

The eight producers have been implementing two sets of voluntary production cuts outside of the broader OPEC+ coalition’s formal policy.

One, totaling 1.66 million barrels per day, stays in effect until the end of next year.

Under the second strategy, the countries reduced their production by an additional 2.2 million barrels per day until the end of the first quarter.

They initially set out to boost their production by 137,000 barrels per day every month until September 2026, but only sustained that pace in April. The group then tripled the hike to 411,000 barrels per day in each of May, June, and July — and is further accelerating the pace of their increases in August.

Oil prices were briefly boosted in recent weeks by the seasonal summer spike in demand and the 12-day war between Israel and Iran, which threatened both Tehran’s supplies and raised concerns over potential disruptions of supplies transported through the key Strait of Hormuz.

At the end of the Friday session, oil futures settled at $68.30 per barrel for the September-expiration Ice Brent contract and at $66.50 per barrel for front month-August Nymex U.S. West Texas Intermediate crude.

Continue Reading

Trending