Connect with us

Published

on

New research in the sphere of rechargeable batteries has resulted in an alkali metal-chlorine battery that can store up to six times more charge than the normal lithium-ion batteries of today. The discovery was published on August 25, 2021. Following the discovery, the team of researchers find themselves closer to two goals: to accelerate battery power to an extent that electronic gadgets will have to be recharged only once a week and to make electronic vehicles that can travel six times more without a recharge.

Rechargeable batteries are based on the reaction between two chemicals and their reverse reaction. The cycle of reactions, initiated by electric current, produce and store charge. Stanford University’s chemistry professor Hongjie Dai compared it to a rocking chair. Speaking about the new prototype, Dai told Stanford News, “What we have here is a high-rocking rocking chair.” The back and forth reactions in the new type of battery involve the compounds sodium chloride or lithium chloride.

Regular single-use batteries are made of lithium and thionyl chloride and they discharge energy much quicker. Professor Hongjie Dai and doctoral candidate Guanzhou Zhu at first wanted to improve existing battery technologies while still using thionyl chloride. However, they soon noticed that a reaction involving chlorine and sodium chloride (common salt) was showing signs of stable rechargeability.

Earlier studies with chlorides often resulted in poor battery performance. This is because, once a chloride breaks into chlorine, it is difficult to efficiently convert it back into its chloride form.

Researchers found a solution by using a positive electrode made of an advanced porous carbon material from collaborators at the National Chung Cheng University of Taiwan. The nanopores store and protect the chlorine molecules when sodium chloride breaks down during charging. When the battery needs to be discharged, the chlorine is used to form sodium chloride. According to Guanzhou Zhu, this cycle can be repeated up to 200 times and “there’s still room for improvement”.

Researchers have achieved high energy density in these batteries: 1,200 milliamp hours per gram of positive electrode material. In contrast to this, conventional lithium-ion batteries have a capacity of only 200 milliamp hours per gram. Therefore, the prototype has six times more capacity. The research was published in the Nature journal

These batteries, if developed the right way, could be used in future satellites and remote controls, to ensure the longevity of the equipment. For now, much improvement is required to make these batteries commercially available.


Continue Reading

Science

SpaceX Launches Two O3b mPOWER Satellites, Successfully Lands Falcon 9 Booster at Sea

Published

on

By

SpaceX Launches Two O3b mPOWER Satellites, Successfully Lands Falcon 9 Booster at Sea

The Falcon 9 launched from Cape Canaveral Space Force Station in Florida to MEO on July 22, at 5:12 p.m. EDT (2112 GMT) with two SES communication satellites — O3b mPOWER 9 and 10. About 8.5 minutes after launch, the rocket’s first stage returned to Earth, landing gently on the droneship “Just Read the Instructions” in the Atlantic Ocean. It was the sixth launch and landing for the booster and extended a run of spot-on recoveries and frequent orbital missions for SpaceX.

SpaceX Expands SES’s mPOWER Constellation with 89th Falcon Launch of 2025

According to a SpaceX mission update, the Falcon 9’s second stage will fire again to beat the satellites out into MEO — slowing down the satellites’ relative speed to Earth, tricks mission planners can use to reduce the moment magnitude before the ground impact. The launch was scrubbed by the abort itself but was aborted 11 seconds before the abort was actually supposed to happen. The abort was not immediately explained, and SpaceX did not immediately request help troubleshooting the issue. The satellites would bring the SES O3b mPOWER constellation up to 100 satellites, a constellation already taking shape with four launches with SpaceX in 2022 and 2024.

The spacecraft are all out of Boeing’s assembly line and weigh about 3,700 pounds each. Today’s successful launch means that SES has 10 satellites in orbit, of which 3 more are currently under construction for launch to orbit within the next 12 months. mPOWER provides a high-capacity internet service across the globe, especially in less connected parts, on-the-go assets, and industrial and large enterprise facilities.

SpaceX’s 89th Falcon launch of 2025 and a trio of Starship test hops are part of a new reliability and cadence standard. Also part of the deal is the company’s delivery of reusable launch capabilities for commercial and deep space missions.

The buildup of SES’s mPOWER fleet is a significant step toward a 13-satellite constellation and a validation of SpaceX’s role as a force in the commercial satellite and internet infrastructure business.

Continue Reading

Science

Astronomers Solve Betelgeuse’s 6-Year Dimming Mystery by Spotting Secret Companion Star

Published

on

By

Astronomers Solve Betelgeuse’s 6-Year Dimming Mystery by Spotting Secret Companion Star

For the first time, astronomers have directly imaged a long theorised companion star orbiting Betelgeuse, the red supergiant famed for its dramatic brightness shifts visible to the naked eye. This elusive companion is believed to be the cause behind Betelgeuse’s puzzling six-year dimming cycle, a mystery that has persisted for over a thousand years. The star system’s newfound configuration, which features Betelgeuse gradually nearing the end of its life and a tightly orbiting blue-white companion, could also foretell a cosmic cannibalisation event in the distant future.

Gemini Telescope Unveils Hidden Companion of Betelgeuse, Solving Ancient Stellar Mystery

As per NASA’s announcement, the detection was made possible through observations by the Gemini North telescope in Hawaii, using the ‘Alopeke instrument. Lead scientist Steve Howell of NASA Ames Research Centre credited the telescope’s high angular resolution and speckle imaging technique for the breakthrough. Past efforts with the Hubble Space Telescope and Chandra X-ray Observatory had failed to reveal the companion. But Gemini’s short-exposure imaging pierced through atmospheric distortions to resolve the faint partner star.

The team found that this companion is roughly 1.5 times the mass of the Sun and orbits just four astronomical units from Betelgeuse—about four times the distance from Earth to the Sun. This makes it the closest detected companion to a red supergiant ever observed, existing deep within Betelgeuse’s extended atmosphere. Scientists believe the companion hasn’t yet ignited hydrogen fusion, suggesting it remains in an early stellar stage.

While the two stars likely formed simultaneously, their evolutionary timelines differ drastically due to mass. Betelgeuse, 700 times the size of the Sun, has aged rapidly, while the smaller star remains youthful. This disparity also sets the stage for a grim outcome: gravitational forces may eventually pull the companion into Betelgeuse, a fate predicted to unfold within the next 10,000 years.

The detection not only resolves Betelgeuse’s mysterious heartbeat-like dimming but also provides astronomers with a new path to study stellar evolution in red supergiants. Another clear view of the companion is expected in November 2027, when it reaches maximum separation from Betelgeuse. The findings were published on July 21 across two papers in The Astrophysical Journal.

Continue Reading

Science

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Published

on

By

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Scientists say Earth will spin slightly faster on Tuesday, July 22, 2025, making that day roughly 1.34 milliseconds shorter than the usual 24-hour period. This subtle acceleration, detected by atomic clocks and satellites, will make July 22 the second-shortest day in recorded history. (Only July 10, 2025 — 1.36 ms short — was shorter this year.) Experts note that since 2020, Earth has repeatedly set new short-day records, a trend now under close watch by global timekeeping authorities. While imperceptible in daily life, the phenomenon may ultimately require an unprecedented “negative” leap second to keep atomic time aligned with Earth’s spin.

Earth’s Unusual Acceleration

According to previous studies, Earth’s rotation is not perfectly constant. The July 22 rotation was measured at 1.34 milliseconds less than a normal day. Reports say that 2025 is witnessing some of the fastest spins on record – the quickest since continuous measurements began in 1973.

In fact, new data showed that earlier in 2025 the shortest day occurred on July 10 (about 1.36 ms shorter than 24 hours), with July 22 a “close runner-up” at 1.34 ms below normal. If current models hold, another brief day is expected on August 5 (roughly 1.25 ms short), leaving July 22 as the second-shortest of the year. Altogether, researchers describe this as a “puzzling trend” of Earth’s rotation speeding up in recent years.

Speed-Up reasons

Scientists attribute these fluctuations to a mix of celestial and geophysical factors. The Moon’s orbit is a prime factor: in early July it reached maximum declination, pulling off-center and briefly accelerating Earth’s spin. The same lunar alignment on July 22 is expected to repeat the effect. Normally, lunar tides act as a brake, gradually lengthening days, but on these shorter timescales the Moon’s position can instead speed up the rotation.

Other subtle influences also play a role. Climate-driven mass shifts – such as melting ice sheets and moving ocean water – change Earth’s moment of inertia and can tweak day length. Even large earthquakes or seasonal atmospheric changes can nudge Earth’s rotation by tiny microseconds.

Continue Reading

Trending