Connect with us

Published

on

As communities, cities, and states develop ambitious energy efficiency and decarbonization goals, energy storage is an increasingly critical component of our energy economy. Renewable energy sources like solar and wind are changing how we power our buildings, industries, and grid; however, they are intermittent ― we need continuous power even after the sun sets or the wind dies down. As such, energy storage is critical to ensuring continuous power and allows energy producers to take full advantage during times of overgeneration on sunny (or windy) days.

When it comes to short-duration energy storage, lithium-ion batteries are considered the front-runner, but batteries are not the whole story. Our buildings, businesses, industries, and grid need more storage, at lower cost, for longer durations, and at larger capacities than batteries can provide to displace fossil fuels for a sustainable future.

To meet this energy storage challenge, researchers at the National Renewable Energy Laboratory (NREL) are in the late stages of prototype testing a game-changing new thermal energy storage technology that uses inexpensive silica sand as a storage medium. Economic Long-Duration Electricity Storage by Using Low-Cost Thermal Energy Storage and High-Efficiency Power Cycle (ENDURING) is a reliable, cost-effective, and scalable solution that can be sited anywhere.

The ENDURING Mechanism: Storable, Electrically Heated Sand Delivers On-Demand Electricity

ENDURING uses electricity from surplus solar or wind to heat a thermal storage material — silica sand. Particles are fed through an array of electric resistive heating elements to heat them to 1,200°C (imagine pouring sand through a giant toaster). The heated particles are then gravity-fed into insulated concrete silos for thermal energy storage. The baseline system is designed for economical storage of up to a staggering 26,000 MWh of thermal energy. With modular design, storage capacity can be scaled up or down with relative ease.

Particle thermal energy storage systems can be constructed with existing infrastructure from retired coal and gas power plants. Image by Al Hicks and Besiki Kazaishvili, NREL

When energy is needed, the hot particles are gravity-fed through a heat exchanger, heating and pressurizing a working gas inside to drive the turbomachinery and spin generators that create electricity for the grid. The system discharges during periods of high electricity demand and when limited solar photovoltaic or wind power are available, such as early in the morning and evening, during dinner preparation, and when TVs are on. Once discharged, the spent, cold particles are once again fed into insulated silos for storage until conditions (and economics) are appropriate again for charging.

How Hot Sand in a Silo Is Revolutionizing Energy Decarbonization

ENDURING offers several advantages relative to other electricity storage technologies.

As a storage medium, abundant silica sand is stable and inexpensive at $30‒$50/ton, and has a limited ecological impact both in extraction and end of life. For comparison, lithium-ion batteries have an exceptional energy storage density ― important for certain sectors such as transportation, where weight matters ― but it comes at a high cost. Particle thermal energy storage is a less energy dense form of storage, but is very inexpensive ($2‒$4 per kWh of thermal energy at a 900°C charge-to-discharge temperature difference). The energy storage system is safe because inert silica sand is used as storage media, making it an ideal candidate for massive, long-duration energy storage.

ENDURING systems have no particular siting constraints and can be located anywhere in the country. These systems may also be constructed using existing infrastructure from retired coal- and gas-fired power plants.

ENDURING technology can support the expansion of renewable energy generation across our country. Building these cost-effective particle thermal energy storage systems around the United States could help utilities to continue using solar and wind without running the risk of destabilizing the grid or needing to curtail renewable energy generation. Particle thermal energy storage will also provide energy reserves so our communities can better navigate through extended weather events, whether a week-long cold front or a summer heat wave.

Multiple Potential Economical Use Cases Support Decarbonization by 2050

The Biden Administration seeks to achieve a carbon-free power sector by 2035 and a net zero emissions economy by 2050. Zhiwen Ma, principal investigator of the ENDURING project, sees an important role for particle thermal energy storage in achieving these goals. “While decarbonization of electricity has a clear path, decarbonization of the whole economy ― which includes things like building heat and industrial processes ― is more challenging because natural gas is very cheap, making it hard to displace,” he said. “Decarbonizing industrial processes and building heat is very tough.”

Converting renewable electricity into heat is one way to decarbonize these sectors. Ma sees an opportunity for particle thermal energy storage to play a role in cost-effectively supplanting natural gas. By using a heat pump, one unit of electricity is transformed into two to three units of heat, which can be stored in the particle thermal energy storage system and then later delivered to the end user (depending on the coefficient of performance of the heat pump or the use of an emerging pumped thermal energy storage technology). These technologies can be used for building and industry process heating to replace coal or natural gas.

In addition to providing grid storage and building heat, ENDURING offers a steady source of heat for industrial and chemical processes that are otherwise incompatible with the intermittency associated with solar and wind power.

According to NREL researcher Patrick Davenport, the economic environment, decarbonization goals, and technology have aligned for particle thermal energy storage. “Sand and concrete silos with refractory insulation are very inexpensive materials that can lead to low-cost energy storage,” he said. “Traditional four-hour storage technologies don’t scale well to the grid or city scale. Now that we are in need of large-scale energy storage, this technology makes a lot of sense.”

Early Achievements and ENDURING Promise

The ENDURING project is seeing promising progress and early interest. The team recently won the American Society of Mechanical Engineers Advanced Energy Systems Division and Solar Energy Division 2021 First-Place Best Paper Award and several U.S. Department of Energy technology funding awards. Patents on concentrating solar power integration have been awarded, and several more are being filed.

The ENDURING prototype heaters and heat exchangers are currently undergoing testing in high-temperature conditions. If the prototype tasks are successful this fall, Ma is confident that ENDURING technology will offer great potential to support renewable integration for future carbon-free energy supply.

Ma is not the only one who sees promise: NREL and clean-energy technology firm Babcock & Wilcox have an exclusive intellectual property option agreement to license the ENDURING particle thermal energy storage technology. Babcock & Wilcox are among several industry and academic research partners that contributed to the ENDURING project, including General Electric, Allied Mineral Products, Worley, Purdue University, and Colorado School of Mines.

Learn more about NREL thermal systems and concentrating solar power research.

Article courtesy of NREL.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Published

on

By

Volvo Penta teams up with e-power to equip Boels with next-gen Battery Energy Storage Systems (BESS)

Veteran marine and industrial power solutions company Volvo Penta has joined forces with energy solutions provider e-power to build battery energy storage systems (BESS). Volvo Penta’s battery systems for energy storage will power BESS units built by e-power that can be catered to a range of applications, most notably construction rental clients like Boels Rentals in Europe.

Volvo Penta is a provider of sustainable power solutions that currently serves land and sea applications under the Volvo Group umbrella. As more and more of the world goes all-electric, the global manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

Nearly 100 years later, Volvo Penta remains an industry leader in marine propulsion systems and industrial engines. As more and more of the world goes all-electric, the Swedish manufacturer has also adapted, sharing cultural values with Volvo Group to engineer new and innovative sustainable power solutions.

For example, all Volvo Penta diesel engines now run on hydro-treated vegetable oil (HVO), reducing well-to-wheel emissions by up to 90% across the marine and industrial power industries. On the zero-emissions side, Volvo Penta has expressed its dedication to fossil-free power solutions, including battery electric components to serve heavy-duty applications such as terminal tractors, forklifts, drill rigs, and feed mixers, to name a few.

Advertisement – scroll for more content

To leverage its battery electric value chain, Volvo Penta has also ventured into battery systems for energy storage (or BESS subsystems). These energy-dense, purpose-built BESS subsystems can provide portable, sustainable energy for all-electric charging and reduce grid dependency.

Volvo battery
Source: Volvo Penta

Volvo Penta to deploy battery systems for energy storage

Volvo Penta recently announced a strategic partnership with e-power, a Belgian power solutions provider. Together, Volvo Penta and e-power will develop a scalable Battery Energy Storage System (BESS) for Boels Rental.

The collaboration continues a long-standing partnership between all three companies. Boels – one of the largest construction rental companies is a long-time customer of e-power generators that utilize Volvo Penta engines. As the company shifts toward electrification and sustainability, it will again turn to those companies to deliver reliable performance.

Volvo Penta’s BESS subsystem comprises battery packs, a Battery Management System (BMS), DC/DC converters, and thermal management, combining to offer a compact, high-density, and transport-friendly solution optimized for rental operations. The company shared that this BESS design is integration-ready, enabling other OEMs like e-power to adapt and scale systems to customer-specific needs. Per e-power business support director, Jens Fets:

We’ve built our reputation on reliability and efficient power systems. Working again with Volvo Penta, this time on battery energy storage, allows us to meet the growing demand for energy in a silent, low-emissions, compact and mobile design—especially in rental applications.

The deployment of these new battery energy storage systems will help Boels cater to its customers’ growing demand for clean, silent, and mobile energy solutions in construction and other industrial applications. 

Aside from being more quickly adaptable to customer needs, Volvo Penta says its BESS architecture marks an overall shift in rental power systems. This is welcome news for all who support a cleaner, more sustainable future across all industries.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

Published

on

By

2026 Mercedes-Benz GLC EV exterior leaks ahead of schedule

That didn’t take long! Just a few hours after Mercedes revealed the screen-heavy interior of its upcoming 2026 GLC EV, photos of the new crossover’s exterior – and that controversial grille! – leaked on Instagram and Reddit. We’ve got them here.

Two days ahead of the GLC EV’s officially schedule global debut, images that reportedly show the new 2026 Mercedes undisguised have leaked on Instagram and Reddit. They show the blocky new light-up grille on the nose of a very smooth, jellybean-like crossover shape that, despite Mercedes’ insistence that it’s moving away from the EQ series’ design language, looks an awful lot like an EQ Mercedes.

Check out the leaked images from kindleauto’s Instagram account, below, and see if you agree with that assessment.

If you need to see more before you feel comfortable commenting on the new SUV’s looks, there’s a few more angles over on the r/mercedes_benz subreddit.

Advertisement – scroll for more content

Leaked exterior pictures of the upcoming GLC EV
byu/Quick_Coyote_7649 inmercedes_benz

As with everything else on the internet, take those unofficial images with a grain of salt and maybe wait until the GLC EV’s official reveal in a few days’ time before casting your final vote on the new look – but there’s very little reason to believe the new Mercedes will look terribly different from what you see here.

Will the new grille and tech-forward interior with its massive, 39″ screen and MB.OS software be enough to turn the tide for Mercedes-Benz, enabling it to finally gain some traction in the electric crossover market? That remains to be seen, but the recently updated Tesla Model Y and crisply-styled new BMW iX3 with its 500 miles of range will make it an uphill battle, for sure.

We got a sneak peek at the new GLC back in July, when Mercedes-Benz Group CEO, Ola Källenius said that, “We’re not just introducing a new model – we’re electrifying our top seller.” Back then, we learned that the new GLC EV would have a wheelbase 3.1″ longer than the current ICE-powered model, as well as more head- and leg-room for its occupants and an extra 4.5 cubic feet (for 61.4 total) of cargo space.

Källenius also promised an innovative new 800V electric architecture and the latest battery tech, which will enable the electric GLC to add around 260 km (~160 miles) of WLTP range in just ten minutes thanks to more than 300 kW of charging capability.

SOURCES | IMAGES: kindleauto; Quick_Coyote_7649.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

E-quipment highlight: John Deere TE 4×2 Electric Gator UTV

Published

on

By

E-quipment highlight: John Deere TE 4x2 Electric Gator UTV

For more than 30 years, John Deere’s go-anywhere Gator has been a trusted tool for ranchers, landscapers, and hobby farmers. But the all-electric TE 4×2 version of Big Green’s little truckster rarely gets to steal the spotlight from its ICE-powered 6×4 cousins.

We’re going to change that.

Unlike some of those other UTV brands that just recently entered the electric vehicle game, John Deere introduced its first all-electric Gator way back in 1998.

That OG E-Gator was designed from the ground up for quiet work in places like golf courses, university and hospital campuses, luxury resorts, and corporate grounds – but its go-anywhere design and quiet running made it a favorite of hunters and ranchers, too. Fitted with eight heavy, 12V lead-acid batteries, the ’98 Gator could deliver 6 hours of runtime between overnight charges.

Advertisement – scroll for more content

We haven’t come a long way, baby


TE 4×2 loaded w/ attachments; via John Deere.

If it ain’t broke, don’t fix it. That seems to be the mentality at Deere when it comes to the all-electric Gator. The TE 4×2 hasn’t chased trends or tried to reinvent itself with flashy autonomous tech. Instead, it’s relied solid, work-horsey reasons. Instead, the UTV has leaned on the formula that’s made it a winner for more than 25 years: bulletproof reliability, low maintenance, and a design that just works. Even the added weight of the low-tech batteries compared to more energy-dense li-ion deals makes sense in this application, providing weight over the drive wheels that delivers sure-footed traction on slippery grass or muddy trails.

That’s not to say the Gator hasn’t changed at all over the last few decades. The electrical system has been upgraded to 48V, and its high-capacity, deep-cycle batteries (12 kWh total capacity) give the TE 4×2 dependable, all-day runtime (up to 8 continuous hours) with the benefit of modern chargers, regenerative braking (!), and updated safety features.

The TE 4×2 electric Gator is available from your local Deere dealer with prices starting at $15,699. And, if you’re looking for an endorsement: my personal Gator is easily my favorite thing … maybe I should try to change my Twitter X handle to “GatorJo”?

Let me know what you think of that idea in the comments.

SOURCE | IMAGES: John Deere.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending