Connect with us

Published

on

2010–2020 Showed Strong Wins For Wind & Solar In China, Nuclear Lagging

In 2014, I made the strong assertion that China’s track record on wind and nuclear generation deployments showed clearly that wind energy was more scalable. In 2019, I returned to the subject, and assessed wind, solar and nuclear total TWh of generation, asserting that wind and solar were outperforming nuclear substantially in total annual generation, and projected that the two renewable forms of generation would be producing 4 times the total TWh of nuclear by 2030 each year between them. Mea culpa: in the 2019 assessment, I overstated the experienced capacity factor for wind generation in China, which still lags US experiences, but has improved substantially in the past few years.

My thesis on scalability of deployment has remained unchanged: the massive numerical economies of scale for manufacturing and distributing wind and solar components, combined with the massive parallelization of construction that is possible with those technologies, will always make them faster and easier to scale in capacity and generation than the megaprojects of GW-scale nuclear plants. This was obvious in 2014, it was obviously true in 2019, and it remains clearly demonstrable today. Further, my point was that China was the perfect natural experiment for this assessment, as it was treating both deployments as national strategies (an absolute condition of success for nuclear) and had the ability and will to override local regulations and any NIMBYism. No other country could be used to easily assess which technologies could be deployed more quickly.

In March of this year I was giving the WWEA USA+Canada wind energy update as part of WWEA’s regular round-the-world presentation by industry analysts in the different geographies. My report was unsurprising. In 2020’s update, the focus had been on what the impact of COVID-19 would be on wind deployments around the world. My update focused on the much greater focus on the force majeure portions of wind construction contracts, and I expected that Canada and the USA would miss expectations substantially. The story was much the same in other geographies. And that was true for Canada, the USA and most of the rest of the geographies.

But China surprised the world in 2020, deploying not only 72 GW of wind energy, vastly more than expected, but also 48 GW of solar capacity. The wind deployment was a Chinese and global record for a single country, and the solar deployment was over 50% more than the previous year. Meanwhile, exactly zero nuclear reactors were commissioned in 2020.

And so, I return to my analysis of Chinese low-carbon energy deployment, looking at installed capacity and annual added extra generation.

Grid-connections of nameplate capacity of wind, solar and nuclear in China 2010-2020

Grid-connections of nameplate capacity of wind, solar and nuclear in China 2010-2020 chart by author

I’ve aggregated this added additional capacity from multiple sources, including the World Nuclear Association, the Global Wind Energy Council, and the International Energy Agency’s photovoltaic material. In three of the 11 years from 2010 to 2020, China attached no nuclear generation to the grid at all. It’s adding more this year, but the year is not complete.

The solar and wind programs had been started in the mid-2000s, and wind energy initially saw much greater deployments. Having paid much more attention to wind energy than solar for the past decade, I was surprised that solar capacity deployments exceeded wind energy in 2017 and 2018, undoubtedly part of why solar was on track to double China’s 2020 target for the technology, while wind energy was only expected to reach 125% of targets. Nuclear was lagging targets substantially, and there was no expectation of achieving them. In 2019, the clear indication was that China would make substantially higher targets for wind and solar, and downgrade their expectations for nuclear, which has been borne out.

But nameplate capacity doesn’t matter as much as actual generation. As stated in the mea culpa, wind energy in China has underperformed. This was assessed in a Letter in the journal Environmental Research by European and North American researchers in 2018.

“Our findings underscore that the larger gap between actual performance and technical potential in China compared to the United States is significantly driven by delays in grid connection (14% of the gap) and curtailment due to constraints in grid management (10% of the gap), two challenges of China’s wind power expansion covered extensively in the literature. However, our findings show that China’s underperformance is also driven by suboptimal turbine model selection (31% of the gap), wind farm siting (23% of the gap), and turbine hub heights (6% of the gap)—factors that have received less attention in the literature and, crucially, are locked-in for the lifetime of wind farms.”

Some of the capacity factor issues are locked in, and some aren’t, but overall wind energy in China’s capacity is well below that of the US fleet still. I’ve adjusted capacity factors for wind energy to be 21% at the beginning of the decade, and up to 26% for 2020 deployments, still well below US experience. Solar, on the other hand, is less susceptible to some of the challenges of that impede wind energy’s generation, and the Chinese experienced median of 20% is used throughout the decade. China’s nuclear fleet has had much better ability to connect to the grid, and as the reactors are new, they aren’t being taken offline for substantial maintenance yet. The average capacity factor for the fleet of 91.1% for the decade is used.

Generation in TWh added each year by wind, solar and nuclear in China 2010-2020

Generation in TWh added each year by wind, solar and nuclear in China 2010-2020

And this tells the tale. Even adjusted for the poor capacity factor’s wind experienced and the above global average capacity factor for nuclear, in no year did the nuclear fleet add more actual generation than wind energy. The story is more mixed in the solar vs nuclear story, but only once in the past five years was more annual generation in TWh added by the nuclear program than by solar. And as a reminder, the Chinese wind and solar deployment programs started well over a decade after the nuclear program which saw its first grid connections in 1994.

What is also interesting to see is that the reversal in wind and solar deployments in China in the past two years. 2019 and 2020 saw double or more than double the actual generation in TWh added by wind than solar. To be clear, some of this is uptick is due to an expected and subsequently announced elimination of federal subsidies for utility-scale solar, commercial solar and onshore wind projects in 2021.

“The new rule, effective from Aug. 1, follows a drastic fall in manufacturing costs for solar and wind devices amid booming renewable capacity in China.”

This appears to have driven Chinese 2020 wind energy deployments to ensure that they would receive the compensation, just as US deployments have seen significant surges and lulls due to changes in the production tax credit. As a result, there is speculation that the announced wind generation capacity is not as fully completed as announced. However, that should not change the expected capacity factors for the coming years, and so I’ve left the 120 TWh projected delivery from the wind farms deployed in 2020 as is.

It’s worth noting that as of today, 7 of the 10 largest wind turbine manufacturers, and 9 of the 10 largest solar component manufacturers are Chinese companies. China remains, as I pointed out a couple of years ago, the only scaled manufacturer of many of the technologies necessary for decarbonization. Further, it’s expanding its market share in those technologies rapidly.

My 2014 thesis continues to be supported by the natural experiment being played out in China. In my recent published assessment of small modular nuclear reactors (tl’dr: bad idea, not going to work), it became clear to me that China has fallen into one of the many failure conditions of rapid deployment of nuclear, which is to say an expanding set of technologies instead of a standardized single technology, something that is one of the many reasons why SMRs won’t be deployed in any great numbers.

Wind and solar are going to be the primary providers of low-carbon energy for the coming century, and as we electrify everything, the electrons will be coming mostly from the wind and sun, in an efficient, effective and low-cost energy model that doesn’t pollute or cause global warming. Good news indeed that these technologies are so clearly delivering on their promise to help us deal with the climate crisis.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

YMX Logistics deploys 20 new Orange EV electric yard trucks

Published

on

By

YMX Logistics deploys 20 new Orange EV electric yard trucks

Leading yard operation 3PL YMX Logistics has announced plans to deploy fully twenty (20) of Orange EV’s fully electric Class 8 terminal trucks at a number of distribution and manufacturing sites across North America.

As the shipping and logistics industries increasingly move to embrace electrification, yard operations have proven to be an almost ideal use case for EVs, enabling companies like Orange EV, which specialize in yard hostlers or terminal tractors, to drive real, impactful change. To that end, companies like YMX are partnering with Orange EV.

“This relationship between YMX and Orange EV is a significant step forward in transforming yard operations across North America,” said Matt Yearling, CEO of YMX Logistics. “Besides the initial benefits of reduction in emissions and carbon footprint, our customers are also seeing improvements in the overall operational efficiency and seeking to expand. Our team members have also been sharing positive feedback about their new equipment and highlighting the positive impact on their health and day-to-day activities.”

This Orange looks good in blue

YMX Logistics electric yard trucks; by Orange EV.

One of the most interesting aspects of this story – beyond the Orange EV HUSK-e XP’s almost unbelievable 180,000 lb. GCWR spec. – is that this isn’t a story about California’s ports, which mandate EVs. Instead, YMX is truly deploying these trucks throughout the country, with at least four currently in Chicago (and more on the way).

“Our collaboration with YMX Logistics represents a powerful stride in delivering sustainable yard solutions at scale for enterprise customers,” explains Wayne Mathisen, CEO of Orange EV. “With rising demand for electric yard trucks, our joint efforts ensure that more companies can access the environmental, financial, and operational benefits of electrification … this is a win for the planet, the workforce, and the bottom line of these organizations.”

We interviewed Orange EV founder Kurt Neutgens on The Heavy Equipment Podcast a few months back, but if you’re not familiar with these purpose-built trucks, it’s worth a listen.

HEP-isode 26

SOURCE | IMAGES: YMX Logistics.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Hyundai IONIQ 9 debut, new NACS Kia, solid state batteries from Honda

Published

on

By

Hyundai IONIQ 9 debut, new NACS Kia, solid state batteries from Honda

On today’s thrilling episode of Quick Charge, we’ve got the all-new Hyundai IONIQ 9 and its “a “rolling living room” pivoting captain’s chairs, Kia gets a go-fast 7 passenger SUV and an updated EV6, while Honda announces plans to start producing solid-state batteries at its new facility in just a few weeks.

We’ve also got big news for American workers – a Minnesota power company is ditching coal for solar while ExxonMobil and LG Chem get to work extracting thousands of tons of lithium out of Tennessee’s soil.

Today’s episode is sponsored by BLUETTI, a leading provider of portable power stations, solar generators, and energy storage systems. For a limited time, save up to 52% during BLUETTI’s exclusive Black Friday sale, now through November 28, and be sure to use promo code BLUETTI5OFF for 5% off all power stations sitewide. Learn more by clicking here.

You can watch the episode, below.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news!

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show!

Read more: Farm-fegnugen? Volkswagen rolls out an electric tractor.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

One of the US’s first solar peaker plants – with Tesla Megapacks – just came online

Published

on

By

One of the US’s first solar peaker plants – with Tesla Megapacks – just came online

Arevon Energy has kicked off operations at Vikings Solar-plus-Storage – one of the US’s first utility-scale solar peaker plants.

The $529 million project in Imperial County, California, near Holtville, features 157 megawatts of solar power paired with 150 megawatts/600 megawatt hours of battery storage.

Vikings Solar-plus-Storage is designed to take cheap daytime solar power and store it for use during more expensive peak demand times, like late afternoons and evenings. The battery storage system can quickly respond to changes in demand, helping tackle critical grid needs.

Vikings leverages provisions in the Inflation Reduction Act that support affordable clean energy, strengthen grid resilience, boost US manufacturing, and create good jobs.

The Vikings project has already brought significant benefits to the local area. It employed over 170 people during construction, many local workers, and boosted nearby businesses like restaurants, hotels, and stores. On top of that, Vikings will pay out more than $17 million to local governments over its lifespan.

“Vikings’ advanced design sets the standard for safe and reliable solar-plus-storage configurations,” said Arevon CEO Kevin Smith. “The project incorporates solar panels, trackers, and batteries that showcase the growing strength of US renewable energy manufacturing.”

The project includes Tesla Megapack battery systems made in California, First Solar’s thin-film solar panels, and smart solar trackers from Nextracker. San Diego-based SOLV Energy handled the engineering, procurement, and construction work.

San Diego Community Power (SDCP) will buy the energy from the Vikings project under a long-term deal, helping power nearly 1 million customer accounts. SDCP and Arevon have also signed an agreement for the 200 MW Avocet Energy Storage Project in Carson, California, which will start construction in early 2025.

Vikings is named after the Holtville High School mascot, and Arevon is giving back to the local community by funding scholarships for deserving Holtville High students.

Arevon is a major renewable energy developer across the US and a key player in California, with nearly 2,500 MW in operation and more than 1,250 MW under construction.

Read more: Minnesota’s largest coal plant goes solar: Sherco Solar comes online


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending