Connect with us

Published

on

India’s Chandrayaan-2 spacecraft has completed more than 9,000 orbits around the Moon, and imaging and scientific instruments on board have been providing excellent data, officials said on Monday.

The Indian Space Research Organisation (ISRO) is holding a two-day Lunar Science Workshop 2021, which began on Monday, to commemorate the completion of two years of operation of Chandrayaan-2 spacecraft around the lunar orbit.

In his inaugural address, ISRO Chairman, K Sivan said the eight payloads on board the Chandrayaan-2 spacecraft are conducting remote sensing and in-situ observations of the Moon at around 100 km altitude from the lunar surface.

“Till date, the Chandrayaan-2 has completed more than 9,000 orbits around the Moon,” added Sivan, also Secretary in the Department of Space (DoS).

According to the Bengaluru-headquartered ISRO, data product and science documents were released by Sivan, along with data from Chandrayaan-2 orbiter payloads.

“The science data are being made available for analysis by academia and institutes, for a greater participation to bring out more science from Chandrayaan-2 mission,” ISRO said.

Sivan said he has reviewed the science results, and found them to be “very much encouraging”.

Chairman of Apex Science Board, ISRO, A S Kiran Kumar said the imaging and scientific instruments on board the Chandrayaan-2 satellite have been providing excellent data.

“Chandrayaan-2 has really incorporated many new features in its instruments which are taking the observations carried out on Chandrayaan-1 to a newer and higher level,” added Kiran Kumar, a former ISRO Chairman.

Project Director of Chandrayaan-2, Vanitha M, said all the sub-systems of the orbiter were performing well.

“We hope that we can get good data from the spacecraft for many more years,” she said.

Vanitha said the imaging payloads of the orbiter – TMC-2 (Terrain Mapping Camera-2), IIRS (Imaging IR Spectrometer), and OHRC (Orbiter High Resolution Camera) have sent us breath-taking pictures of the Moon.

The two-day workshop, organised by ISRO, is being live-streamed on the space agency’s website and Facebook page, for effectively reaching the students, academia, and institutes, and to engage the scientific community to analyse Chandrayaan-2 data, an ISRO statement said.

The science results from the eight payloads are being presented by the scientists in the workshop being held virtually.

In addition, there will be lectures on the Chandrayaan-2 mission, tracking, operations, and data archival aspects.

Along with the scientists from ISRO/DoS, there will also be lectures on lunar science to be delivered by scientists from Indian Institute of Science Education and Research, Kolkata, Indian Institute of Science, Bengaluru, and Indian Institute of Technology, Roorkee, it was stated.


Continue Reading

Science

A Nearby Supernova May End Dark Matter Search, Claims New Study

Published

on

By

A Nearby Supernova May End Dark Matter Search, Claims New Study

The pursuit of understanding dark matter, which comprises 85 percent of the universe’s mass, could take a significant leap forward with a nearby supernova. Researchers at the University of California, Berkeley, led by Associate Professor of Physics Benjamin Safdi, have theorised that the elusive particle known as the axion might be detected within moments of gamma rays being emitted from such an event. Axions, predicted to emerge during the collapse of a massive star’s core into a neutron star, could transform into gamma rays in the presence of intense magnetic fields, offering a potential breakthrough in physics.

Potential Role of Gamma-Ray Telescopes

The study was published in Physical Review Letters and revealed that the gamma rays produced from axions could confirm the particle’s mass and properties if detected. The Fermi Gamma-ray Space Telescope, currently the only gamma-ray observatory in orbit, would need to be pointed directly at the supernova, with the likelihood of this alignment estimated at only 10 percent. A detection would revolutionise dark matter research, while the absence of gamma rays would constrain the range of axion masses, rendering many existing dark matter experiments redundant.

Challenges in Catching the Event

For detection, the supernova must occur within the Milky Way or its satellite galaxies—an event averaging once every few decades. The last such occurrence, supernova 1987A, lacked sensitive enough gamma-ray equipment. Safdi emphasised the need for preparedness, proposing a constellation of satellites, named GALAXIS, to ensure 24/7 sky coverage.

Axion’s Theoretical Importance

The axion, supported by theories like quantum chromodynamics (QCD) and string theory, bridges gaps in physics, potentially linking gravity with quantum mechanics. Unlike neutrinos, axions could convert into photons in strong magnetic fields, providing unique signals. Laboratory experiments like ABRACADABRA and ALPHA are also probing for axions, but their sensitivity is limited compared to the scenario of a nearby supernova. Safdi expressed urgency, noting that missing such an event could delay axion detection by decades, underscoring the high stakes of this astrophysical endeavour.

Continue Reading

Science

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Published

on

By

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Intelligent extraterrestrial civilisations might be utilising stars as massive interstellar vehicles to explore the galaxy, according to a theory proposed by Clement Vidal, a philosopher at Vrije Universiteit Brussel in Belgium. His research suggests that alien species could potentially accelerate their binary star systems to traverse vast cosmic distances. While such a concept is purely hypothetical and unproven, Vidal’s recent paper, which has not undergone peer review, raises intriguing possibilities about advanced extraterrestrial engineering.

Concept of Moving Star Systems

The study was published in the Journal of the British Interplanetary Society. As per a report by LiveScience, the idea revolves around the notion that alien civilisations, instead of building spacecraft for interstellar travel, might manipulate entire star systems to travel across the galaxy. Vidal highlights binary star systems, particularly those involving neutron stars and smaller companion stars, as ideal candidates. Neutron stars, due to their immense gravitational energy, could serve as anchors for devices designed to propel the system by selectively ejecting stellar material.

Vidal explained in the paper that uneven heating or manipulation of magnetic fields on a star’s surface could cause it to eject material in one direction. This process would create a reactionary thrust, propelling the binary system in the opposite direction. The concept provides a way to travel while preserving planetary ecosystems, making it a theoretically viable method for species reliant on their home systems.

Known Examples with High Velocities

Astronomers have identified hypervelocity stars, such as the pulsars PSR J0610-2100 and PSR J2043+1711, which exhibit high accelerations. While their movements are believed to be natural phenomena, Vidal suggests they could be worth further investigation to rule out potential artificial influences.

This theory adds an unconventional angle to the search for intelligent life, expanding possibilities beyond traditional methods of exploration like searching for signals or probes. The research underscores the importance of considering advanced and unconventional methods aliens might employ to navigate the galaxy.

Continue Reading

Science

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

Published

on

By

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

NASA’s Hubble Space Telescope has provided new insights into the young star FU Orionis, located in the constellation Orion. Observations have uncovered extreme temperatures in the inner region of its accretion disk, challenging current models of stellar accretion. Using Hubble’s Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph, astronomers captured far-ultraviolet and near-ultraviolet spectra, revealing the disk’s inner edge to be unexpectedly hot, with temperatures reaching 16,000 kelvins—almost three times the Sun’s surface temperature.

A Star’s Bright Outburst Explained

First observed in 1936, FU Orionis became a hundred times brighter in months and has remained a unique object of study. Unlike typical T Tauri stars, its accretion disk touches the stellar surface due to instabilities. These are caused by the disk’s large mass, interactions with companion stars, or material falling inwards. Lynne Hillenbrand, a co-author from Caltech, in a statement said that the ultraviolet brightness seen exceeded predictions, revealing a highly dynamic interface between the star and its disk.

Implications for Planet Formation

As per a report by NASA, the study holds significant implications for planetary systems forming around such stars. The report further quoted Adolfo Carvalho, lead author of the study, saying that while distant planets in the disk may experience altered chemical compositions due to outbursts, planets forming close to the star could face disruption or destruction. This revised model provides critical insights into the survival of rocky planets in young star systems, he further added.

Future Investigations on FU Orionis

The research team continues to examine spectral emission lines in the collected data, aiming to map gas movement in the star’s inner regions. Hillenbrand noted that FU Orionis offers a unique opportunity to study the mechanisms at play in eruptive young stars. These findings, published in The Astrophysical Journal Letters, showcase the ongoing value of Hubble’s ultraviolet capabilities in advancing stellar science.

Continue Reading

Trending