Connect with us

Published

on

NASA’s Perseverance Mars rover has now collected two rock samples, with signs that they were in contact with water for a long period of time boosting the case for ancient life on the Red Planet.

“It looks like our first rocks reveal a potentially habitable sustained environment,” said Ken Farley, project scientist for the mission, in a statement Friday. “It’s a big deal that the water was there for a long time.”

The six-wheeled robot collected its first sample, dubbed “Montdenier” on September 6, and its second, “Montagnac” from the same rock on September 8.

Both samples, slightly wider than a pencil in diameter and about six centimeters long, are now stored in sealed tubes in the rover’s interior.

A first attempt at collecting a sample in early August failed after the rock proved too crumbly to withstand Perseverance’s drill.

The rover has been operating in a region known as the Jezero Crater, just north of the equator and home to a lake 3.5 billion years ago, when conditions on Mars were much warmer and wetter than today.

The rock that provided the first samples was found to be basaltic in composition and likely the product of lava flows.

Volcanic rocks contain crystalline minerals that are helpful in radiometric dating.

This in turn could help scientists build up a picture of the area’s geological history, such as when the crater formed, when the lake appeared and disappeared, and how climate changed over time.

“An interesting thing about these rocks as well is that they show signs for sustained interaction with groundwater,” NASA geologist Katie Stack Morgan told a press conference.

The scientists already knew the crater was home to a lake, but couldn’t rule out the possibility that it had been a “flash in the pan” with floodwaters filling up the crater for as little as 50 years.

Now they are more certain groundwater was present for much longer.

“If these rocks experienced water for long periods of time, there may be habitable niches within these rocks that could have supported ancient microbial life,” added Stack Morgan.

The salt minerals in the rock cores may have trapped tiny bubbles of ancient Martian water.

“Salts are great minerals for preserving signs of ancient life here on Earth, and we expect the same may be true for rocks on Mars,” added Stack Morgan.

NASA is hoping to return the samples to Earth for in-depth lab analysis in a joint mission with the European Space Agency sometime in the 2030s.

Continue Reading

Science

SpaceX Launches Falcon 9 With 29 Starlink Satellites, Marks Florida’s 100th Space Coast Launch of 2025

Published

on

By

SpaceX’s Falcon 9 achieved Florida’s 100th launch of 2025, carrying 29 Starlink satellites into low Earth orbit. The milestone reflects a surge in launch cadence driven by reusable rockets, satellite constellations, and expanding commercial demand, marking one of the busiest years ever on the Space Coast.

Continue Reading

Science

Webb’s Stunning View of Apep Shows a Rare Triple-Star System Wrapped in Spirals

Published

on

By

Webb’s mid-infrared images of Apep reveal a rare triple-star system producing vast carbon-rich dust spirals from colliding stellar winds. The two Wolf–Rayet stars and a distant supergiant create layered shells that record centuries of activity and enrich the galaxy with elements vital for future stars and planets.

Continue Reading

Science

Study Traces Moon-Forming Impact to an Inner Solar System Neighbour Named Theia

Published

on

By

A new isotopic study reveals that Theia—the Mars-sized body that struck Earth 4.5 billion years ago to form the Moon—likely originated in the inner Solar System, close to Earth’s birthplace. By comparing heavy-element isotope ratios in lunar rocks, Earth samples, and meteorites, researchers found identical signatures, showing both worlds formed from the same inn…

Continue Reading

Trending