Connect with us

Published

on

SpaceX is set to launch four people into space Wednesday on a three-day mission that is the first to orbit the Earth with exclusively private citizens on board, as Elon Musk’s company enters the space tourism fray.

The Inspiration4 mission caps a summer that saw billionaires Richard Branson and Jeff Bezos cross the final frontier, on Virgin Galactic and Blue Origin spaceships respectively, a few days apart in July.

The SpaceX flight has been chartered by American billionaire Jared Isaacman, the 38-year-old founder and CEO of payment processing company Shift4 Payment. He is also a seasoned pilot.

The exact price he paid SpaceX hasn’t been disclosed, but it runs into the tens of millions of dollars.

The mission itself is far more ambitious in scope than the few weightless minutes Virgin Galactic and Blue Origin customers can buy.

The SpaceX Crew Dragon will be flying further than the orbit of the International Space Station.

“The risk is not zero,” said Isaacman in an episode of a Netflix documentary about the mission.

“You’re riding a rocket at 17,500 miles (28,000 kilometres) per hour around the Earth. In that kind of environment there’s risks.”

SpaceX has already given no fewer than ten astronauts rides to the ISS on behalf of NASA – but this will be the first time taking non-professional astronauts.

Lift-off is scheduled for Wednesday from 8:00 pm Eastern Time (5:30am IST) from launch pad 39A, at NASA’s Kennedy Center in Florida, from where the Apollo missions to the Moon took off.

‘Are we going to the Moon?’

In addition to Isaacman, who is the mission commander, three non-public figures were selected for the voyage via a process that was first advertised at the Super Bowl in February.

Each crew member was picked to represent a pillar of the mission.

The youngest, Hayley Arceneaux, is a childhood bone cancer survivor, who represents “hope.”

She will become the first person with a prosthetic to go to space.

“Are we going to the Moon?” she asked, when she was offered her spot.

“Apparently people haven’t gone there in decades. I learned that,” she laughed, in the documentary.  

The 29-year-old was picked because she works as a Physician Assistant in Memphis for St. Jude’s Hospital, the charitable beneficiary of Inspiration4.

One of the donors secured the seat of “generosity”: Chris Sembroski, 42, is a former US Air Force veteran who now works in the aviation industry.

The last seat represents “prosperity” and was offered to Sian Proctor, a 51-year-old earth science professor who, in 2009, narrowly missed out on becoming a NASA astronaut.

She will be only the fourth African American woman to go to space.

Months of training

The crew’s training has lasted months and has included experiencing high G force on a centrifuge – a giant arm that rotates rapidly.

They have also gone on parabolic flights to experience weightlessness for a few seconds and completed a high altitude, snowy trek on Mount Rainier in the northwestern United States.

They spent time at the SpaceX base, though the flight itself will be fully autonomous.

Over the three days of orbit, their sleep, heart rate, blood, and cognitive abilities will be analysed.

Tests will be carried out before and after the flight to study the effect of the trip on their body.

The idea is to accumulate data for future missions with private passengers.  

The stated goal of the mission is to make space accessible for more people, although space travel remains for the moment only partially open to a privileged few.

“In all of human history, fewer than 600 humans have reached space,” said Isaacman.

“We are proud that our flight will help influence all those who will travel after us.”


Continue Reading

Science

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Published

on

By

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Scientists say Earth will spin slightly faster on Tuesday, July 22, 2025, making that day roughly 1.34 milliseconds shorter than the usual 24-hour period. This subtle acceleration, detected by atomic clocks and satellites, will make July 22 the second-shortest day in recorded history. (Only July 10, 2025 — 1.36 ms short — was shorter this year.) Experts note that since 2020, Earth has repeatedly set new short-day records, a trend now under close watch by global timekeeping authorities. While imperceptible in daily life, the phenomenon may ultimately require an unprecedented “negative” leap second to keep atomic time aligned with Earth’s spin.

Earth’s Unusual Acceleration

According to previous studies, Earth’s rotation is not perfectly constant. The July 22 rotation was measured at 1.34 milliseconds less than a normal day. Reports say that 2025 is witnessing some of the fastest spins on record – the quickest since continuous measurements began in 1973.

In fact, new data showed that earlier in 2025 the shortest day occurred on July 10 (about 1.36 ms shorter than 24 hours), with July 22 a “close runner-up” at 1.34 ms below normal. If current models hold, another brief day is expected on August 5 (roughly 1.25 ms short), leaving July 22 as the second-shortest of the year. Altogether, researchers describe this as a “puzzling trend” of Earth’s rotation speeding up in recent years.

Speed-Up reasons

Scientists attribute these fluctuations to a mix of celestial and geophysical factors. The Moon’s orbit is a prime factor: in early July it reached maximum declination, pulling off-center and briefly accelerating Earth’s spin. The same lunar alignment on July 22 is expected to repeat the effect. Normally, lunar tides act as a brake, gradually lengthening days, but on these shorter timescales the Moon’s position can instead speed up the rotation.

Other subtle influences also play a role. Climate-driven mass shifts – such as melting ice sheets and moving ocean water – change Earth’s moment of inertia and can tweak day length. Even large earthquakes or seasonal atmospheric changes can nudge Earth’s rotation by tiny microseconds.

Continue Reading

Science

Algae-Grown Bioplastic Passes Mars Pressure Test, Boosting Hopes for Red Planet Habitats

Published

on

By

Algae-Grown Bioplastic Passes Mars Pressure Test, Boosting Hopes for Red Planet Habitats

In a major step forward for sustainable space travel, researchers have been able to successfully grow algae inside biodegradable bioplastic, which mimics the conditions of the extreme Martian environment. The experiment was intended to see how well materials made of polylactic acid could keep conditions habitable on Mars, where the surface pressure is less than 1 percent that of the Earth’s. It’s an important step toward the development of self-sustaining habitats for the human portion of the expeditionary force that require regenerative biological systems instead of expensive resupply missions from Earth.

Algae Thrive in Bioplastic Chambers Under Mars-Like Conditions, Paving Way for Space Habitats

As per a study published in Science Advances, a research team led by Robin Wordsworth of Harvard University demonstrated that the green algae Dunaliella tertiolecta could not only survive but perform photosynthesis inside 3D-printed chambers engineered to replicate Mars’s thin, carbon dioxide–rich atmosphere. The bioplastic chamber also protected the algae from ultraviolet radiation while allowing enough light for biological activity. Liquid water was stabilised using a pressure gradient within the chamber.

The researchers highlighted that bioplastics offer distinct advantages over traditional industrial

materials, which are difficult to recycle or transport in space. Since polylactic acid is derived from natural sources, it could potentially be manufactured or regenerated on-site using algae—establishing a self-sustaining loop. “If you have a habitat that is composed of bioplastic and it grows algae within it, that algae could produce more bioplastic,” Wordsworth noted in a statement.

This latest experiment builds on the team’s earlier work involving silica aerogels that replicated Earth’s greenhouse conditions. By combining algae-based bioplastic systems for material regeneration with aerogels for thermal and atmospheric control, the team sees a viable path forward to long-term extraterrestrial habitation. The chambers’ success under Mars-like conditions reinforces the possibility of using biologically sourced materials to support life beyond Earth.

In future experiments, those systems are to be tested in harsher vacuum conditions, eventually for the benefit of human spaceflight and with spinoff applications on Earth, said Wordsworth, who contends such technology can have spinoff benefits.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy Z Fold 8 Might Not Feature Upgraded Titanium Backplate Included With Galaxy Z Fold 7: Report



NASA’s Twin TRACERS Satellites Will Monitor Space Weather to Shield Earth from Solar Storms

Continue Reading

Science

NASA Tests Modular Satellite Tech to Cut Launch Costs and Speed Missions

Published

on

By

NASA Tests Modular Satellite Tech to Cut Launch Costs and Speed Missions

NASA is testing new scalable satellite technology to integrate and launch scientific sensors faster and at lower cost. NASA’s Athena EPIC (Economical Payload Integration Cost) mission uses a compact, modular spacecraft platform that “shares resources among the payloads onboard” so each instrument doesn’t need its own control system. By offloading routine functions to the bus, this architecture promises “lower costs to taxpayers and a quicker path to launch”. Langley leads the project, which will fly as a SpaceX rideshare in mid-2025 to test the concept in orbit. It could expedite deployment of climate and weather sensors and accelerate future missions.

Scalable Satellite Platforms and Demonstration Missions

According to official site, NASA and industry partners are developing modular small satellite platforms. The Athena EPIC spacecraft is built from eight interlocking Hyper-Integrated Satlet (HISat) modules that form a “SensorCraft” bus, simplifying integration of multiple instruments. In parallel, NASA’s Pathfinder Technology Demonstrator (PTD) series uses a standard six-unit (6U) CubeSat bus (by Terran Orbital) that can be reconfigured quickly. The PTD-3 mission, launched in 2022, carried MIT Lincoln Laboratory’s TBIRD optical-communications payload and achieved a record 200 gigabits-per-second laser downlink from orbit.

Commercial partners are involved as well: Blue Canyon Technologies built the two CubeSats for NASA’s CubeSat Laser Infrared Crosslink (CLICK) mission, and will supply four for the forthcoming Starling formation-flying demo. These standardized buses and partnerships speed integration and testing of new satellite systems.

Faster Deployments, Lower Costs, and Scientific Gains

These scalable satellite buses promise to cut mission costs and cycle times. Instead of the billion-dollar platforms of old, the new “SensorCraft” design can slash costs to the single-digit millions per mission. Smaller satellites are cheaper to build and easier to replace if failures occur. Moreover, by reusing existing parts, teams can accelerate development – for example, Athena’s optical sensor was assembled from spare components of NASA’s CERES climate-observation satellites. NASA officials note that, “as satellites become smaller, a less traditional, more efficient path to launch is needed” to maximize science return.

Continue Reading

Trending