Connect with us

Published

on

Mike Muglia hates to miss a wave.

A self-described surf junkie, Muglia catches waves on his surfboard off the coast of the Outer Banks in North Carolina. Further into those waters—15 nautical miles to be exact—sits another surfer. Aptly named Waverider, this surfer is a 440-pound, half banana-yellow, half beet-purple buoy that Muglia uses to study the energy that flows in our oceans.

This banana-yellow Waverider buoy will spend 12 months off North Carolina’s coast, collecting data on ocean waves, currents, tides, and water temperatures to help marine energy developers find the best spots to source clean, renewable energy from the ocean. Photos courtesy of Mike Muglia

Marine energy—clean power generated from ocean currents, waves, tides, and water temperature changes—is still young, but it has the potential to deliver clean, renewable electricity to coastal communities where nearly 40% of Americans live. Before that can happen, scientists need to pinpoint which oceanic arteries host the most reliable energy. With 3.4 million square nautical miles of U.S. waters—a larger area than the combined landmass of all 50 states—there is a lot left to explore.

Now, Muglia and Miguel Canals just deployed two new Waverider buoys—one off the coast of North Carolina and the other off Puerto Rico. There, the surfers will collect detailed data on the surface waves in those areas of the Atlantic Ocean, adding to publicly available data sets on waves, currents, and water temperatures that will not only move marine energy closer to widescale use but also help scientists understand how climate change is affecting our oceans.

Muglia is a principal investigator at the Southeast Atlantic Coastal Ocean Observing Regional Association and research professor at the Coastal Studies Institute of North Carolina, and Canals is a principal investigator at the Caribbean Coastal Ocean Observing System in Puerto Rico.

“We want to characterize the wave energy resources available,” said Canals, who, like Muglia, surfs the same waves he studies. “But we also want to collect long-term data on waves to understand the ocean and the changing climate for the benefit of future generations.”

The National Renewable Energy Laboratory (NREL), which owns the two Waverider buoys, partnered with ocean experts Muglia and Canals to collect this critical new data. This NREL-led effort is part of a larger, nine-year project funded by the U.S. Department of Energy’s Water Power Technologies Office. The collaborative, multi-institution study generates the resource data that technology and project developers need to design the next generation of devices. No one institution (or buoy) can collect it all, which is why partners like Muglia and Canals are so valuable. The data these partners generate are used to verify and improve model accuracy, and are also valuable on their own as detailed records of the real ocean. The data from this project—both the measurements and the models that use them—is publicly available on the Marine Energy Atlas.

“The ocean,” said Levi Kilcher, a physical oceanographer at NREL who leads the Waverider and Marine Energy Atlas projects, “is an extremely challenging environment. But we’re starting to see success, which makes it a very exciting time to be in this industry.”

On Aug. 2, 2021, Muglia set off in the Miss Caroline with a deckhand and marine mammal observer, who watched for sea turtles, dolphins, and other wildlife that might swim too close to the boat. For the 40-nautical-mile, three-hour trip, the bulbous Waverider buoy sat secure in a rubber tire on the back of the small skiff. When the Miss Caroline cruised to the selected spot—indistinguishable from the surrounding waters except by GPS—the team scanned the area for underwater obstacles before anchoring the Waverider under an almost-cloudless, blue sky.

From their lonely ocean homes, the two buoys will send live data back to Muglia’s and Canals’ teams using satellite communications systems. Solar panels help power those systems, and flashing lights alert boats to keep a safe distance.

Now, Muglia, Canals, and their colleagues and students wait impatiently for the first batch of data to stream in. Wave energy researchers and engineers are also waiting impatiently. Using high-quality data on how the ocean moves, they can design wave energy converters that are better tailored to extract energy from the motion of the ocean surface.

The data can serve climate and environmental scientists, too.

In the tropical Puerto Rican waters, violent winter storms and summer hurricanes can create energetic seas. Canals and his team chose their buoy site specifically for its high energy potential—those waves pack power—but the data can also help researchers understand how extreme wave events impact the coastal environment. So far, Canals has only lost one buoy in Puerto Rico—to Hurricane Maria. It was recovered two weeks later off the Turks and Caicos Islands.

Canals, who successfully deployed his Waverider on June 15, 2021, also chose his site because the seabed lacked a significant population of benthic organisms—seabed dwellers, like clams, oysters, sea stars, or sea cucumbers—or sensitive habitats. “There’s just sand and mud,” he said, “which makes it an ideal location for the anchor deployment.”

In Puerto Rico, the Waverider buoy can help climate scientists track how extreme waves—forged in violent winter storms and summer hurricanes—can impact the coastal environment. Photos courtesy of Miguel Canals

Neither Canals nor Muglia, who monitor multiple offshore buoys, have ever seen wildlife get tangled in buoy moorings. In fact, they have seen the opposite: The buoys attract shoals of slender, mud-colored Cobia and big-nosed, neon-yellow mahi-mahi, which like to swarm the bobbing devices.

And the Waveriders are not just for fish and scientists.

By streaming the buoys’ measurements to North Carolina’s Jennette’s Pier aquarium, which welcomes about 250,000 visitors a year, “the public can walk in and see what the wave heights are, see what the water temperature is, see what the ocean surface currents look like off the coast of North Carolina,” Muglia said.

You can find the same data from any computer anywhere in the world: With an online data feed available through the Coastal Data Information Program, surfers like Canals and Muglia can check for dangerous currents, frigid temperatures, or flat waves before heading out on their surfboards. It can also help law enforcement navigate volatile waters to catch up with offshore lawbreakers.

“Even though the main purpose is for resource characterization,” Canals said, “the buoy will have a lot of applications for surfers, fishermen, paddleboarders, divers, law enforcement, coastal managers, and boaters.”

Both buoys now float near the Gulf Stream, which swings through the Gulf of Mexico (near the Caribbean Coastal Ocean Observing System on Puerto Rico’s northern coast) and hooks around Florida before heading up the east coast to Canada. With its warm and nutrient-rich waters, the Gulf Stream is a major regulator of the world’s climate, feeds marine wildlife, and helps their populations thrive, so the U.S. fishing industry can thrive, too.

Still, Muglia said, “What happens down here is not well understood.” Those rich, energetic waters could help power coastal communities with clean energy. But, if their temperatures shift or their speedy currents slow, that could disrupt global weather and climate, potentially causing more violent storms in Europe or higher sea levels in major U.S. cities like Boston and New York.

The two Waverider buoys will help both marine energy developers and climate scientists better understand these mysterious waters.

For now, as he waits for the data, Muglia is guaranteed to never miss another wave—either on his surfboard or in his laboratory—with the Waverider surfing offshore.

Learn more about NREL’s water resource characterization research.

Article courtesy of NREL.

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Wisconsin’s first 3 NEVI-funded EV fast charging stations are open

Published

on

By

Wisconsin's first 3 NEVI-funded EV fast charging stations are open

Wisconsin’s first three EV fast charging stations using funding from the National Electric Vehicle Infrastructure (NEVI) Formula program are now online.

The EV fast charging stations are in Ashland, Chippewa Falls, and Menominee, in western Wisconsin, which are rural areas that see a lot of visitors due to tourism and their location along key highway corridors.

As is required by the NEVI program, all three charging stations contain four ports with both CCS and J3400 connectors, and each station can deliver up to 150 kW per port.

NEVI-funded charging stations must also have 24-hour public accessibility and provide amenities like restrooms, food and beverages, and shelter, and must be sited within one travel mile of the Alternative Fuel Corridor.

The stations are located at local Kwik Trips, a Wisconsin-based gas station that serves 12 million customers weekly at more than 880 locations across six states, making the charging experience easy to find and increasing consumer trust.

“It’s great to see more states expanding the NEVI network and filling in coverage gaps for drivers and riders,” said Gabe Klein, executive director of the Joint Office of Energy and Transportation. “EV charging often happens in communities. Whether it’s parents visiting their kids at college, families staying at their cabins, or people road-tripping on Interstate 94 for the holidays – expanding the network gives consumers accessible options to charge their vehicles.”

The stations are part of Kwik Trip’s Kwik Charge program, which will provide DC fast chargers to guests traveling throughout the Midwest. Kwik Trip has received $8.1 million in NEVI funds in Wisconsin to install chargers at 24 of its locations. The company is building an app using Driivz’s software so EV drivers can find Kwik Charge chargers and check charger availability and pricing.

Read more: Kwik Trip is installing DC fast chargers across the Midwest


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days

Published

on

By

The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days

A new study published in the journal Renewable Energy uses data from the state of California to demonstrate that no blackouts occurred when wind-water-solar electricity supply exceeded 100% of demand on the state’s main grid for a record 98 of 116 days from late winter to early summer 2024 for an average (maximum) of 4.84 (10.1) hours per day.

Compared to the same period in 2023, solar output in California is up 31%, wind power is up 8%, and batteries are up a staggering 105%. Batteries supplied up to 12% of nighttime demand by storing and redistributing excess solar energy.

And here’s the kicker: California’s high electricity prices aren’t because of wind, water, and solar energy. (That issue is primarily caused by utilities recovering the cost of wildfire mitigation, transmission and distribution investments, and net energy metering.)

In fact, researchers from Stanford, Lawrence Berkeley National Laboratory, and the University of California, Berkeley found that states with higher shares of renewable energy tend to see lower electricity prices. The takeaway – and the data backs it up – is that a large grid dominated by wind, water, and solar is not only feasible, it’s also reliable.

The researchers concluded:

Despite the rapid growth and high penetration of [wind-water-solar] WWS, the spot price of electricity during the period dropped by more than 50% compared with the same period in the previous year, and no blackouts occurred, giving confidence that the addition of more solar, wind, and batteries should not be a cause for concern.

Mark Z. Jacobson, co-author of the paper and professor of civil and environmental engineering and director of the atmosphere/energy program at Stanford University, explained in an email to Electrek:

This paper shows that the main grid in the world’s fifth-largest economy was able to provide more than 100% of the electricity that it used from only four clean renewable sources: solar, wind, hydroelectric, and geothermal, for anywhere from five minutes to over 10 hours per day for 98 out of 116 days during late winter, all of spring, and early summer, as well as for 132 days during the entire year of 2024, without its grid failing.

The growth of solar, wind, and battery storage, in particular, resulted in fossil gas use dropping 40% during the 116-day period and 25% during the entire year. In comparison with 2023, solar, wind, and battery capacities increased significantly, with batteries doubling in capacity.

The paper also shows that high electricity prices in California have nothing to do with renewables; in fact, without renewables, prices would have been higher.

In fact, 10 of the 11 US states with higher fractions of their demand powered by renewables have among the lowest US electricity prices.

Instead, in California, the spot price of electricity dropped by over 50% during the period of interest between 2023 and 2024, indicating it was easier to match demand with supply with the increase in renewables and batteries in 2024.

Read more: New CA smart grid law will help solar and fix the grid by… simply replacing wires


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Watch the Porsche Taycan Turbo GT smoke a Ferrari SF90 and Yamaha R1M in a drag race

Published

on

By

Watch the Porsche Taycan Turbo GT smoke a Ferrari SF90 and Yamaha R1M in a drag race

Is Porsche’s new Taycan faster than a Ferrari SF90 or Yamaha R1M? In an epic new drag race, the Porsche Taycan Turbo GT flexed its power, leaving the Ferrari and Yamaha bike in the dust. Watch the video below.

Porsche Taycan Turbo GT races a Ferrari and Yamaha

Porsche unveiled the Turbo GT model after introducing the upgraded Taycan in February. The new Porsche Taycan has significant improvements, including more range and performance.

The Taycan Turbo GT is Porsche’s fastest production car yet. With up to 1,092 hp, the electric sports car, equipped with its Wiessach Package, can hit 0 to 60 mph in just 2.1 seconds.

Porsche’s GT model took the title from the Tesla Model S Plaid as the fastest electric series production car at the Weathertech Raceway Laguna Seca in California earlier this year. With a lap time of 1:27:87, Porsche topped the previous record of 1:30:30 set by the Tesla Model S Plaid in 2020.

Is the Porsche Taycan Turbo GT fast enough to beat a Ferrari SF90 and Yamaha R1M? The folks at Carwow put them up against one another in a drag race to see.

Porsche Taycan Turbo GT vs Ferrari SF90 vs Yamaha R1M drag race (Source: Carwow)

The Taycan goes up against the SF90 with 769 hp from a 4.0 liter twin-turbo V8 combined with three electric motors. Meanwhile, the Yamaha RM1 is powered by a 1 liter 4 stroke engine, which is good for 200 hp.

You can see that Porsche had no problem handling the Ferrari and Yamaha in the first race. Even with the Ferrari jumping the line in the next race, the Taycan proves its might, beating both to the line. After a few more attempts, the Porsche remained undefeated.

Porsche-Taycan-Turbo-GT-Ferrari
Porsche Taycan Turbo GT with Weissach Package (Source: Porsche AG)

The Taycan Turbo GT completed a quarter-mile in 9.9 seconds, compared to the Ferrari SF90’s 10.0 seconds and the Yamaha RM1’s 10.3 seconds.

With all that power, Porsche’s Taycan Turbo GT, with the Weissach package, comes with a hefty price tag, starting at $230,000. The base 2025 Porsche Taycan starts at $99,400, while the more expensive Turbo and Turbo S trims start at $173,600 and $209,000, respectively.

After finally getting its hands on one, the GT model already took down one of the kings of Carwow’s drag strip. Which vehicle will it take down next?

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending