Connect with us

Published

on

Courtesy of RMI.
By Max Lainfiesta, Nathaniel Buescher, & Michael Liebman 

Income inequality is palpable on the streets of the United States in cities and towns alike. On one block you may have neighborhoods with maintained roads and sidewalks, well-funded schools, and easy access to services including grocery stores, transit, healthcare, and banks. And on the next block you may have neighborhoods in transit or food deserts with vulnerable key infrastructure including streets, schools, and healthcare.

This checkerboard-like phenomenon becomes ever more apparent after a disaster, as communities with less resources wait, often literally in the dark, while construction crews and vehicles go first to the areas with more.

This was especially visible in Puerto Rico after Hurricane Maria, which struck four years ago on September 20, when communities endured the longest power outage in US history. Public aid for many lower- and middle-income communities was both insufficient and slow. That is why RMI and partners* formed the Puerto Rico Community Energy Resilience Initiative (CERI).

CERI’s goal is to advance access to reliable and renewable energy for critical facilities in low-to-moderate income communities using solar plus storage microgrids. Under a broader definition of critical facility, examples include hospitals and fire stations, local life-sustaining businesses, and non-profits providing essential services following disasters.

The CERI team spent a year working on pilot projects, community engagement, and financing vehicle development. In the end, the team found that a community-driven process combined with flexible capital and technical assistance is the most effective way to help achieve energy resilience for those whose needs are not served in the current market.

The CERI team on site at one of the critical facilities: Farmacia Jomari in rural Puerto Rico. During power outages after Hurricane Maria, the pharmacy provided critical health & financial services to local community members.

Putting All Communities in the Driver’s Seat

CERI puts Puerto Rican communities that received limited aid after disasters in the driver’s seat. The team does this by first listening to community stakeholders and then addressing their energy resilience needs by preparing and de-risking the project. CERI then uses a blend of capital from financial institutions and philanthropic organizations to advance access to reliable and renewable energy.

Currently, the CERI team is installing four pilot projects at critical facilities: two nonprofit organizations and two local businesses, with systems averaging approximately 63 kW of solar and 30 kWh of storage. The pilot projects highlight the importance of community ownership of systems, flexibility in designing a project’s financing, and timing for engaging different stakeholders.

When microgrid projects are locally owned, community members autonomously create their energy goals while simultaneously bolstering local economies and jobs. Facility leaders can determine which equipment and operations must continue during an outage based on their own experiences. This bottom-up involvement shifts accountability from external programs to the community itself.

Flexible Financing Adapts to Community Needs

It is crucial to have financing models that are scalable yet able to flex to individual project constraints. The CERI team will soon launch a financing vehicle which will provide critical facilities throughout the island with concessionary capital and technical assistance needed to simultaneously make systems more affordable and make financing viable.

Operationally, this equates to a lower interest rate and a shorter term on the loan used to pay for the facility’s microgrid. This grant funding contributes to the system’s down payment and to the creation of a loan loss reserve for financial institutions to allow facilities with varying credit histories to access competitive interest rates.

The CERI team’s initial vision was to award a project with an amount of grant funding so that the microgrid’s estimated monthly costs over a 10-year period would be less than the facility’s average monthly energy bill. Monthly costs include loan payments, maintenance, insurance costs, and fixed fees to the utility.

Although some facility staff prioritized the lower monthly energy costs, other facility managers were willing to pay more to reduce their loan term. Such scenarios highlighted the need for the CERI team to work with financial institutions to offer flexibility in the loan’s terms and/or payment options that do not penalize early payments.

Syncing Timelines of Multiple Stakeholders

From a timeline perspective, as the CERI team scales up, the team will ensure to use an inclusive and fair process for project recruitment and selection. This includes engaging with all types of communities (rural and urban, for example) and maintaining transparency with interested facilities.

Once projects are selected, CERI team members will be diligent to engage all the project’s stakeholders early in the project development process and use a competitive process whenever possible to find savings for the participating organizations. Such stakeholders include local financial institutions, local microgrid developers, and critical facility staff. These stakeholders have varying amounts of staff available to focus on a specific microgrid project and differing due diligence and review processes.

For example, financial institutions assess the facility’s financial history, developers build systems based on the facility staff’s requirements, and the facility staff decide whether to take a loan depending on costs and loan terms. If not lined up properly, these timelines translate into time-consuming due diligence processes and rounds of negotiation that can lead to delays in a project.

The Right System for Each Individual Need

Facilities have greatly varying needs differing on the types of electricity services, electricity rates, and on how and when they use energy. Therefore, technical assistance on energy modeling, system sizing, energy efficiency analysis, and procurement support is key to ensure that each facility has the right system and best price for its specific needs.

For example, a therapy and rehabilitation center may use power mainly during weekdays while a supermarket may require a steady energy supply 24 hours a day, seven days a week, 365 days a year. In the event of a prolonged power outage, facilities have very different critical load needs — while some facilities may be able to operate with 25 percent of the usual energy supply, others may require 50 percent or more. Time of use and critical load size have significant implications when designing battery size.

There are also physical constraints that affect project design. Some facilities may have a structurally sound roof that has enough space to accommodate the system, while others may not have enough roof space or may need significant repairs to accommodate a solar system. And some facilities may need ground-mounted systems that increase the system costs (ground mounted systems of this size are often more expensive than roof mounted systems based on the additional construction needed).

In most cases, facility owners and or administrators lack the experience and background needed to know if the system is right for their needs, if the price is appropriate given the market, or if the equipment meets the local requirements. With technical assistance, facilities can get the right system at the right price, and are likely to share their positive experiences with colleagues. This will lead to grassroots scaling of renewable energy in communities in Puerto Rico and beyond.

 The Importance of Capacity Building

Maintenance is key to the sustainability of these systems. Building the capacity to check the system, use pre-contracted O&M and warranties, replace parts as needed, and ensure continuous safety and system operation is essential. Through a CERI-specific capacity building plan, facility owners and administrators gain the knowledge required to understand the technical aspects, financials, and overall implications of acquiring and maintaining a solar-plus-storage microgrid.

What’s Next for CERI?

The CERI team is preparing a transition to a next phase of demonstration projects across Puerto Rico. This work will set the stage for the full implementation of a scaled-up financing vehicle where hundreds of facilities will benefit from affordable and resilient solar-plus-storage microgrids.

These microgrids will provide stable energy prices, savings from day one, the ability to continue providing essential services in the event of an emergency, environmental benefits, and ultimately, community resilience and wellness. They will enable all community members to receive critical services such as health care, food, water, and communication when needed most.

If you are interested in learning more, please contact us at CERI@rmi.org.

* CERI was founded by The Rockefeller Foundation; RMI; Fundación Comunitaria de Puerto Rico; The Puerto Rico Science, Technology, and Research Trust; the Association of Renewable Energy Consultants and Contractors for Puerto Rico; and Resilient Power Puerto Rico.

Featured photo by Wei Zeng on Unsplash

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Tesla jumped the gun, Nissan drivers will have to wait a bit for Supercharger access

Published

on

By

Tesla jumped the gun, Nissan drivers will have to wait a bit for Supercharger access

It sounds like Tesla jumped the gun when announcing that Nissan drivers now have access to the Supercharger network in North America.

They will have to wait a bit.

Yesterday, we reported that Tesla added Nissan to the list of automakers with EVs capable of using the Supercharger network in North America.

However, Tesla has since removed Nissan from its list of automakers with access and switched the Japanese automaker back to the “coming soon” list.

Nissan confirmed to Electrek that access is not currently available, but it will be available by the end of the year.

It sounds like a miscommunication on Tesla’s side. We hear that it should be coming soon.

Elon Musk fired Tesla’s entire charging team – seemingly to make an example of its then-head of charging, Rebecca Tinucci, who reportedly disagreed with Musk about making further layoffs following another layoff wave.

Instead of just firing her, Musk decided to fire the entire team and then sent an email to other Tesla managers using the charging team situation as a warning.

Tesla has since had to rehire several former members of its charging team to rebuild the department.

This is believed to have slowed down the opening of the Supercharger network to other automakers in North America. We were told that communications with Tesla’s charging team were difficult to non-existent for those automakers for weeks earlier this year.

As we have previously reported, the situation has definitely slowed down Tesla’s own deployment of Supercharger stations.

Nonetheless, the Supercharger network recently hit the milestone of 60,000 chargers worldwide.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Northvolt files for bankruptcy, CEO quits

Published

on

By

Northvolt files for bankruptcy, CEO quits

Europe’s “green dream” Northvolt has filed for bankruptcy protection in the US after a rescue package failed to go through, leaving the battery maker with just one week’s worth of cash in the account. Cofounder and CEO Peter Carlsson, who spearheaded a costly expansion, has also quit.

The Swedish-owned battery maker filed for Chapter 11 in the Southern District of Texas, reports Bloomberg, with $5.8 billion debt. CEO Peter Carlsson, Telsa’s former chief products officer, stepped down from his role as CEO after the filing, but will remain onboard as advisor and director.

According to a statement, Northvolt said that its main factory will maintain business as usual during the reorganization, as the company now has a buffer from creditors, giving it time to restructure the balance sheet. However, the company said that this will not impact its business in Germany, and through the court process, Northvolt now has access to about $145 million in cash collateral. An additional $100 million in debtor-in-possession financing will be added to the pot via one of its customers, the report said.

In recent weeks, Northvolt has been in intense negotiations in the hope of securing a $300 million rescue package to give the company a bit more time to seek longer-term funding. But when that deal fell through, the battery maker was forced to seek protection from creditors via the Chapter 11 filing.  

The company still has a $7 billion project in place in Quebec – a new campus that is set to include a cell production plant, battery recycling, and cathode active-material production facilities –  and the bankruptcy won’t affect those plans, the company said on its website. “Northvolt Germany and Northvolt North America, subsidiaries of Northvolt AB with projects in Germany and Canada, are financed separately and will continue to operate as usual outside of the Chapter 11 process as key parts of Northvolt’s strategic positioning.”

The plant is expected to have capacity to produce 30 GWh of battery cell every year, with an expansion set to double that output, making it enough to power 1 million EVs. The Canadian government is putting $1.334 billion CND toward the project, with Quebec chipping in another $1.37 billion CND.

Northvolt has hit hard times in recent months, once thought of as Europe’s best shot to homegrown EVs and the makers of “the world’s greenest battery.” Enthusiasm mounted as the company opened the doors to its first plant in Sweden, in the small town of Skelleftea near the Arctic Circle, in 2021. Billions of dollars have been invested into the company, and Volvo, VW, and BMW rushed to place future orders.

All of this enthusiasm has been fueled by a vision to cut dependency on China by creating greener EV batteries using 100 percent recycled nickel, manganese, and cobalt. Plans were put in place to build factories in Gothenburg, in southern Sweden, and Poland, Germany, and Canada, all backed by huge government subsidies. Back in January, the company raised an additional $5 billion, firmly locking in its position as one of Europe’s best-funded startups and recipient of the largest-ever green loan in the EU.

But then things started going south, with Northvolt’s production problems and massive delays forcing BMW to cancel its €2 billion battery cell order with the company. This past May, Northvolt also announced that it pushing back its plans for an IPO until next year. The interim report that followed revealed the dire state of its finances and how far its production had fallen short of goals, with Carlsson admitting he had been “too aggressive” with the company’s expansion plan.

Since Northvolt has put in place a series of changes to reset the company’s course, including bringing onboard a new CFO, leaving the former CFO to focus solely on expansion plans. Plus the company started making cuts, including closing down its research center, Cuberg, in San Francisco and deprioritizing secondary businesses. At the end of September, Northvolt announced that it would cut 1,600 staff from three Swedish sites and about 20 percent of its international workforce.

Last month, Volvo started proceedings to take over their joint venture with Northvolt, while Volkswagen Group’s representative to Northvolt’s board stepped down this month. Sweden, for its part, is ruling out taking a stake to save its homegrown enterprise, Bloomberg reports. Carlsson had said last month that the company needs more than $900 million to permanently shore up its finances.

Photo credit: Northvolt


If you’re an electric vehicle owner, charge up your car at home with rooftop solar panels. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing on solar, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

YMX Logistics deploys 20 new Orange EV electric yard trucks

Published

on

By

YMX Logistics deploys 20 new Orange EV electric yard trucks

Leading yard operation 3PL YMX Logistics has announced plans to deploy fully twenty (20) of Orange EV’s fully electric Class 8 terminal trucks at a number of distribution and manufacturing sites across North America.

As the shipping and logistics industries increasingly move to embrace electrification, yard operations have proven to be an almost ideal use case for EVs, enabling companies like Orange EV, which specialize in yard hostlers or terminal tractors, to drive real, impactful change. To that end, companies like YMX are partnering with Orange EV.

“This relationship between YMX and Orange EV is a significant step forward in transforming yard operations across North America,” said Matt Yearling, CEO of YMX Logistics. “Besides the initial benefits of reduction in emissions and carbon footprint, our customers are also seeing improvements in the overall operational efficiency and seeking to expand. Our team members have also been sharing positive feedback about their new equipment and highlighting the positive impact on their health and day-to-day activities.”

This Orange looks good in blue

YMX Logistics electric yard trucks; by Orange EV.

One of the most interesting aspects of this story – beyond the Orange EV HUSK-e XP’s almost unbelievable 180,000 lb. GCWR spec. – is that this isn’t a story about California’s ports, which mandate EVs. Instead, YMX is truly deploying these trucks throughout the country, with at least four currently in Chicago (and more on the way).

“Our collaboration with YMX Logistics represents a powerful stride in delivering sustainable yard solutions at scale for enterprise customers,” explains Wayne Mathisen, CEO of Orange EV. “With rising demand for electric yard trucks, our joint efforts ensure that more companies can access the environmental, financial, and operational benefits of electrification … this is a win for the planet, the workforce, and the bottom line of these organizations.”

We interviewed Orange EV founder Kurt Neutgens on The Heavy Equipment Podcast a few months back, but if you’re not familiar with these purpose-built trucks, it’s worth a listen.

HEP-isode 26

SOURCE | IMAGES: YMX Logistics.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending