Connect with us

Published

on

Engineers at Northwestern University in Evanston, Illinois, US, have designed electronic microchips that can fly. These flying microchips, or microfliers, are the size of a sand grain and can fly without any motor or engine, much like a maple leaf or air-borne seeds of plants. These are the smallest-ever human-made flying structures. The microflier’s aerodynamics is designed so that it falls in a stabilised way at a slow velocity. This ensures that it stays airborne for a longer time and disperses over a broad area. These features make it ideal for monitoring air pollution and airborne diseases. The research was published in the Nature journal.

Northwestern University’s John A. Rogers, who led the device’s development, said in a press release,  “Our goal was to add winged flight to small-scale electronic systems, with the idea that these capabilities would allow us to distribute highly functional, miniaturised electronic devices to sense the environment for contamination monitoring, population surveillance or disease tracking.”

The ideas for design were inspired by the biological world. The microflier’s movement can be compared to that of a propelling maple leaf falling from an elevation. Engineers studied the aerodynamics of a number of plant seeds. They drew the most direct inspiration from the tristellateia plant. It is a flowering vine with star-shaped bladed seeds. The blade-like structure helps the seeds to catch the wind to fall with a slow, rotating spin.

Engineers built a model with three wings. Then they studied the aerodynamics of their designs through full-scale computational modelling. The next stage involved building and testing structures in the lab.

Engineers designed the precursors of the structures in 2D and found ways to turn them into 3D models. Rogers said that the process is helpful because all existing semiconductor devices are built in planar layouts. This 2D to 3D transition will help them to use all industry-standard materials and manufacturing methods to build flat chips and then transform them into 3D shapes.

These microfliers can be packed with ultra-miniaturised technology. These include sensors, a power source to harvest ambient energy, memory storage, and an antenna to wirelessly transfer data to another device.

The microfliers are to be made of bioresorbable material that will biodegrade when they come in contact with water.


This week on Orbital, the Gadgets 360 podcast, we discuss iPhone 13, new iPad and iPad mini, and Apple Watch Series 7 — and what they mean to the Indian market. Orbital is available on Apple Podcasts, Google Podcasts, Spotify, Amazon Music and wherever you get your podcasts.

For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.

Twitter Appointed Officers in Compliance With New IT Rules, Centre Tells Delhi High Court

Continue Reading

Science

Indian Team Finds 53 Massive Quasars Blasting Jets Millions of Light-Years Long

Published

on

By

Astronomers in India have identified 53 previously unknown giant radio quasars powered by supermassive black holes, each releasing enormous plasma jets reaching up to 7.2 million light-years—nearly 50 times the Milky Way’s diameter. Using GMRT data, the team expanded the catalog of known giant quasars and offered valuable clues about how black holes grow, merge, a…

Continue Reading

Science

Scientists Warn Southern Ocean Could ‘Burp’ Stored Heat, Delaying Global Cooling for 100 Years

Published

on

By

New modelling suggests the Southern Ocean could one day release the vast heat it has stored from greenhouse gas pollution. If CO₂ levels were pushed to net-negative, deep convection may trigger a sudden “thermal burp” that warms the planet for decades. Though idealised, the study shows how Antarctica’s surrounding seas could shape long-term climate outcomes.

Continue Reading

Science

New Gravitational-Wave Signal May Reveal Primordial Black Holes Born After the Big Bang

Published

on

By

Scientists have spotted an unusual gravitational-wave signal that may reveal the universe’s first primordial black holes—tiny relics dating back to the Big Bang. Recorded by LIGO–Virgo–KAGRA in November 2025, the event involves an object far lighter than any known stellar remnant. If verified, it could reshape theories of black holes and dark matter.

Continue Reading

Trending