Life-cycle assessments are ways to gauge the impact of any product or process. What is the cost of a system over a defined period of time? Life-cycle assessments are really important as we consider the transition to renewable energy sources, especially as we share insights into a zero emissions future with newbies or cynics.
Life-cycle assessments provide an exhaustive overview of the upstream (material sourcing and delivery) and downstream (product distribution, use, and disposal) impacts associated with any given system. Originally designed to focus on environmental impacts by scientists, they now have been extended to examine social and economic impacts, sometimes called life-cycle costing, by policymakers and decision-makers. The most comprehensive evaluations begin with the extraction of raw material; move to the various steps of production, implementation, and operation; and extend all the way to the energy use of carriers to perform work.
Life-cycle analysis considers both upfront cost of production and incremental costs of operation and depreciation. As a data-intensive methodology, it incorporates all inputs and outputs, requires detailed information, and is organized into databases known as life-cycle inventories.
What Do the Scientists Say about Energy Resources & their Life-Cycle Assessments?
Executive summaries from a variety of scientific white papers can offer us life cycle insights into different energy sources. Here are a few to peruse.
Active Transportation:Life-cycle analysis provides a comprehensive view of the environmental impact of transportation infrastructure due to processes involving construction, operation, and maintenance.
Airplanes show the highest GHG emissions — 3 times that of cars and 6 times that of buses.
Cars or buses show higher GHG emissions when considering life-cycle impacts than the results without the life-cycle impacts because the GHG impact of manufacturing and operating automobiles and buses could be greater than that of other modes.
Walking does not require any tools, so its life-cycle impact is minimal compared to other modes.
The GHG impact of producing and maintaining bicycles is much smaller than that of automobiles or public transportation vehicles.
On balance, active transportation modes produce far less emissions than other modes even after taking into account all the life-cycle impacts.
Biomass: Co-firing biomass as a means of GHG abatement becomes economically competitive with traditional carbon capture and sequestration only after an incentive is in place to mitigate emissions.
The point at which co-firing becomes an attractive option depends on the potential value of CO2, the level of an emissions penalty, and the type of plant.
The break-even value would either represent the amount required on the sale of the captured CO2 in the capture cases, or a benefit received for the use of biomass as a fuel source in the non-capture cases, when compared to the economics of a supercritical (SC) PC plant without capture or co-firing.
This value would need to be reached before incentivizing either CO2 capture or biomass co-firing. The emissions penalty would be the minimum value required to encourage the use of capture technology or abatement using biomass.
Hydropower: The assessment considers various ecological influence groups which could be generally categorized as — global warming, ozone formation, acidification, eutrophication, ecotoxicity, human toxicity, water consumption, stratospheric ozone depletion, ionizing radiation, and land use.
Though water itself is not lethal, the electricity production process involves many stages, which creates environmental issues.
Furthermore, the transportation medium of these elements to the plant location releases hazardous particles i.e., carbon monoxide, dust, and carcinogenic particles.
Among the key impact groups, the whole outcomes show that a substantial ecological influence occurred at non-alpine region plants over alpine region plants. The reason behind this is that the long distance transportation of raw materials in non-alpine region hydropower plants due to unavailability at nearby locations where raw materials of the alpine based plants is available at nearby locations.
The maximum impact is occurred at fine particulate matter formation impact category due to freshwater eutrophication category by both types of hydropower plants. The reason behind these impacts is the amount of toxic materials present as constituent of plant structure and its electricity production steps.
Natural Gas: This analysis takes into account a wide range of performance variability across different assumptions of climate impact timing.
Natural gas-fired baseload power production has life cycle greenhouse gas (GHG) emissions 35% to 66 % lower than those for coal-fired baseload electricity.
The lower emissions for natural gas are primarily due to the differences in average power plant efficiencies (46% efficiency for the natural gas power fleet versus 33% for the coal power fleet) and a higher carbon content per unit of energy for coal in comparison to natural gas.
Natural gas-fired electricity has 57% lower GHG emissions than coal per delivered megawatt-hour (MWh) using current technology when compared with a 100-year global warming potential (GWP) using unconventional natural gas from tight gas, shale, and coal beds.
Petroleum: Petroleum is produced from crude oil, a complex mixture of hydrocarbons, various organic compounds, and associated impurities.
The crude product exists as deposits in the earth’s crust, and the composition varies by geographic location and deposit formation contributors. Its physical consistency varies from a free flowing liquid to nearly solid. Crude oil is extracted from geological deposits by a number of different techniques.
When comparing transportation GHG emissions, both the tailpipe or tank-to-wheel (TTW) emissions, and the upstream or well-to-tank (WTT) emissions are considered in the full well to wheel (WTW) life cycle.
Extracting, transporting, and refining crude oil and bio-based alternatives on average account for approximately 20-30% of well-to-wheels (WTW) greenhouse gas (GHG) emissions with the majority of emissions generated during end use combustion in the vehicle phase (TTW).
GHG emissions in the generic cases range from ≈105 to 120 g of CO2/MJ [gasoline basis, full fuel cycle, lower heating value (LHV) basis] when co-produced electricity displaces natural-gas-fired combined-cycle electricity.
The carbon intensity varies with the energy demand of TEOR, the fuel combusted for steam generation, the amount of electric power co-generated, and the electricity mix. The emission range for co-generation-based TEOR systems is larger (≈70−120 g of CO2/MJ) when coal is displaced from the electricity grid (low) or coal is used for steam generation (high). The emission range for the California-specific cases is similar to that for the generic cases.
Solar: Life-cycle assessment is now a standardized tool to evaluate the environmental impact of photovoltaic technologies from the cradle to the grave.
The carbon footprint emission from PV systems was found to be in the range of 14–73 g CO2-eq/kWh, which is 10 to 53 orders of magnitude lower than emission reported from the burning of oil (742 g CO2-eq/kWh from oil).
Negative environmental impacts of PV systems could be substantially mitigated using optimized design, development of novel materials, minimize the use of hazardous materials, recycling whenever possible, and careful site selection. Such mitigation actions will reduce the emissions of GHG to the environment, decrease the accumulation of solid wastes, and preserve valuable water resources.
Following a report published by the International Renewable Energy Agency (IRENA), the volume of PV panel waste could globally yield a value of up to 60–78 million tons by 2050. Recycling solar cell materials can also contribute up to a 42% reduction in GHG emissions.
Wind: Wind power presents minimal emissions and environmental impacts during the working phase, being considered as a “cleaner” generation source. But not all stages of wind power are so efficient.
The extraction of raw materials, manufacturing, and transportation as part of wind power construction have significant emissions of CO2 and environmental impacts.
Not only will improvements in logistics, transportation, a mixed electricity supplement, and a more efficient equipment production reduce CO2 emissions from wind power construction, new basic materials and innovative built techniques may decrease CO2 emissions and energy demand.
Decommissioning stage may present a reduction of the energy consumption and CO2 emissions through reusing equipment, recycling critical materials in the end of life cycle, reducing the extraction of raw materials and the total consumption of resources.
Such changes may create unexpected fluctuations in the market, such as shortages of supplies and dependence on exporters.
Of course, there are many other types of energy sources and other data analyses to consult to consider life cycle assessments. For more ideas, try Life Cycle Analysis of Energy for a good starting point.
Lucid’s electric minivan can outsprint the Chevy Corvette Z06, and it has more interior space than a Ford Explorer. Is the Lucid Gravity really the “ultimate uncompromising SUV?”
Lucid Gravity SUV is faster than a Corvette Z06
Lucid’s electric SUV is impressive inside and out. The Gravity provides up to 450 miles of driving range, ultra-fast charging (200 miles in under 11 mins), and it even offers up to 120 cubic feet of cargo space. That’s more than the Ford Explorer (87.8 cu ft).
It’s also faster than most sports cars. The Grand Touring trim has up to 845 hp, good for a 0 to 60 mph sprint in just 3.4 seconds, but the Dream Edition takes it to another level.
Powered by dual electric motors, the Lucid Gravity Dream Edition boasts 1,070 hp. To see how Lucid’s minivan stacks up against the competition, Car and Driver nabbed one for testing.
Advertisement – scroll for more content
On the test track, the Lucid’s minivan covered a quarter-mile in just 10.6 secs, beating a Chevrolet Corvette Z06 to 150 mph by nearly three seconds.
According to Car and Driver, the Gravity didn’t just impress in the quarter-mile, “it was a beast in every acceleration metric.” Lucid’s SUV hit 30 mph in 1.4 seconds, 70 mph in 3.7 secs, and topped 100 mph in just 5.9 seconds.
Lucid Gravity Grand Touring (Source: Lucid)
Dave Vanderwerp, the testing director who took the Gravity for a spin, said the electric SUV “gets a sort of second wave of thrust starting around 60 mph.”
With a quarter-mile of just 10.6 secs, Lucid’s Gravity is the fastest SUV they have ever tested, beating out the Rivian Tri-Motor Max (11.1 secs), BMW iX M60 (11.5 secs), and Mercedes-AMG EQE53 SUV.
Lucid Gravity (Source: Lucid)
Although the Rivian’s 850 hp R1S Tri-Motor beat the Gravity to 60 mph, Lucid’s SUV sprinted ahead in the quarter-mile, traveling nearly 20 mph faster.
It was also faster than gas-powered super SUVs, including the Lamborghini Urus Performante (11.2 secs) and Porsche Cayenne Turbo GT (11.2 secs). However, they have yet to test a Tesla Model X Plaid, so that could change the game.
Lucid Gravity Dream Edition vs Audi RS Q8 Performance, Range Rover Sport SV, Porsche Macan Turbo Electric, Rivian R1S Quad, and Porsche Panamera Turbo S E-Hybrid (Source: Hagerty)
In what it called the “1,000 hp mom missiles” drag race, Hagerty recently pitted the Gravity Dream Edition against the Audi RS Q8 Performance, Range Rover Sport SV, Porsche Macan Turbo Electric, Rivian R1S Quad, and Porsche Panamera Turbo S E-Hybrid.
The result was a three-way tie between Lucid’s Gravity, the Porsche Panamera Turbo, and Rivian R1S Quad hitting the quarter-mile in 10.5 seconds.
The Lucid Gravity is available to order starting at $94,900 in the US. Later this year, Lucid is launching the lower-priced Touring trim, priced from $79,900.
FTC: We use income earning auto affiliate links.More.
Solar provided over 11% of total US electrical generation in May, while wind + solar produced over one-fifth, and the mix of all renewable energy sources generated nearly 30%, according to data just released by the US Energy Information Administration (EIA).
Solar continues to set new records
Solar continues to be the fastest-growing source of US electricity, according to EIA’s latest “Electric Power Monthly” report (with data through May 31, 2025), which the SUN DAY Campaign reviewed.
In May alone, electrical generation by utility-scale solar (>1-megawatt (MW)) increased by 33.3% year-over-year, while “estimated” small-scale (e.g., rooftop) solar PV increased by 8.9%. Combined, they grew by 26.4% and provided over 11% of US electrical output during the month.
For the first time ever, the mix of utility-scale and small-scale solar produced more electricity than wind: solar – 38,965 gigawatt-hours (GWh); wind – 36,907-GWh.
Advertisement – scroll for more content
Moreover, utility-scale solar thermal and photovoltaic expanded by 39.8% while that from small-scale systems rose by 10.7% during the first five months of 2025 compared to the same period in 2024. The combination of utility-scale and small-scale solar increased by 31.1% and was nearly 8.4% of total US electrical generation for January to May – up from 6.6% a year earlier.
Solar-generated electricity easily surpassed the output of US hydropower plants (6.1%). Solar now produces more electricity than hydropower, biomass, and geothermal combined.
Wind is also on the rise in 2025
Wind produced 12.2% of US electricity in the first five months of 2025. Its output was 3.9% greater than the year before, almost double that produced by hydropower.
During the first five months of 2025, electrical generation by wind + utility-scale and small-scale solar provided 20.5% of the US total, up from 18.7% during the first five months of 2024. Solar + wind accounted for nearly 21.5% of US electrical output in May alone.
During the first five months of this year, wind and solar provided 26.2% more electricity than coal, and 15.4% more than US nuclear power plants. In May alone, the disparity increased further when solar + wind outproduced coal and nuclear power by 55.7% and 22.1%, respectively.
All renewables produced almost 30% in May
The mix of all renewables – wind, solar, hydropower, biomass, geothermal – produced 9.7% more electricity in January to May than they did a year ago (7.6% more in May alone) and provided 28.1% of total US electricity production compared to 26.5% 12 months earlier.
Electrical generation by all renewables in May alone provided 29.7% of total US electrical generation. Renewables’ share of electrical generation is now second only to that of natural gas, whose electrical output actually dropped by 5.9% during the month.
“Solar and wind continue to grow, set new records, and outproduce both coal and nuclear power,” said Ken Bossong, the SUN DAY Campaign’s executive director. “Consequently, the ongoing Republican assault against renewables is not only misguided and illogical but also a good example of shooting oneself in the foot.”
The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them.
Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.
FTC: We use income earning auto affiliate links.More.
In the Electrek Podcast, we discuss the most popular news in the world of sustainable transport and energy. In this week’s episode, we discuss Tesla’s disturbing earnings, a new self-driving challenge, solid-state batteries, and more.
As a reminder, we’ll have an accompanying post, like this one, on the site with an embedded link to the live stream. Head to the YouTube channel to get your questions and comments in.
After the show ends at around 5 p.m. ET, the video will be archived on YouTube and the audio on all your favorite podcast apps:
Advertisement – scroll for more content
We now have a Patreon if you want to help us avoid more ads and invest more in our content. We have some awesome gifts for our Patreons and more coming.
Here are a few of the articles that we will discuss during the podcast:
Here’s the live stream for today’s episode starting at 4:00 p.m. ET (or the video after 5 p.m. ET:
FTC: We use income earning auto affiliate links.More.