Connect with us

Published

on

By Karina Hershberg, PE

For most of human history, work and activity has been shaped by the sun. During the day, humans could farm, socialize, and build. At sunset, activity had to slow down, and shelter found. Energy was only used when energy was available, during daylight hours. We were leading Net Zero Carbon lives before it was cool.

By first harnessing biofuels and then fossil fuels, life got to expand beyond the confines of sunrise and sunset. Fossil fuels were an amazing portable form of super dense energy that transformed humanity’s path through history and paved the way to our modern lifestyle. Unfortunately, these fuels also have led us to the abyss of the climate crisis in which we currently find ourselves. The question now is whether we can reconcile the negative aspects of our relationship with energy while preserving the positive.

Enter the concept of grid-interactive flexible loads. It doesn’t roll off the tongue quite as easy as “solar” or “wind,” which is perhaps why it hasn’t received the same amount of attention in discussions of sustainability. Yet, a closer look at the plans for energy decarbonization shows flexible loads are just as important to the success of this planet-saving solution as its more famous renewable energy cousins.

The concept of flexible load is called by many names — demand response, peak shaving, grid-interactive efficient buildings, distributed energy resources, and the list goes on. But despite a cornucopia of buzzwords, these terms all describe the same vision of utilizing buildings and their systems to help grids.

Net Zero … What?

Grid-interactivity and flexible loads are in response to the limitations of onsite solar generation and even the aspirations of net zero energy. Net zero energy has been an important goal for the building sector to target, but it technically is not the same as truly being in sync with available energy resources. In many ways, it is a math problem you do at the end of the year to reconcile your annual usage with your annual generation, whereas total decarbonization means your load is served by renewable sources every minute of every hour of every day. So, while net zero energy is a critical step in the right direction, 24/7 emissions-free energy is ultimately where we need to land. If done correctly, it will be a return to a zero-carbon lifestyle, one aligned with the energy flows of nature, while still supporting the advances of modern society.

Images courtesy of PAE

DIY Grid-Interactivity

One of the key solutions for returning to a system in balance with renewable resources is to reimagine buildings and homes as dynamic partners in these larger utility systems instead of simply passive users of the energy services. This more dynamic relationship is where grid-interactive, flexible loads come back into the picture.

Demand response programs come in all shapes and sizes, but to an average homeowner such as myself, they can look as simple as a text message like the one I received on June 22, 2020. It was the inaugural residential “Peak Time Rebate Event” for my utility, Portland General Electrical (PGE). My text message invited me to reduce my household electricity use the following day from 5pm–8pm. In exchange, I would receive an incentive based on my decreased usage.

Source: Portland General Electric

As an electrical engineer at PAE with a passion and expertise for sustainability design and the future of energy, I was excited to participate in this program for the first time. Finally, a chance to make my home my own research project! Living in an older house without air-conditioning, my family was already in the habit of passive cooling techniques for the hot summer days- shades on the windows, avoid opening doors during the hottest parts of the day, and generally try not to add heat to the house. When the time came, 5 PM on June 23, we went around the house trimming our electric loads. It was as straightforward as shutting off lights, avoiding appliance cycles like laundry and dishes, and making simple no-cook egg salad sandwiches for dinner, which the kids reported was the best dinner they had ever had. My children’s questionable culinary preferences aside, it was a nice evening with relatively little impact to our typical routine.

The next day when my phone pinged with a text from PGE, I was excited to see the results of my efforts, but that excitement turned to confusion when I opened the message. I had saved just $.75 — reducing energy consumption from my typical 2.02 kWh to an unremarkable 1.27 kWh. I was deflated. In the coming days, I compared notes with fellow energy geek colleagues and discovered we all had a similar experience — little measurable individual impact from our supposedly critical behavior change. What was going on?

Power of the Collective

It turned out the key to our seeming failure was the scale of our view. When observed through the lens of an individual, the impact to behavior and usage was minimal. But as a collective, the story suddenly changed. After talking with experts at PGE, I learned that the voluntary collective reduction of households in PGE service areas reduced energy demand by 11 MW per event hour compared to expected demands. It put us right on the cusp of eliminating the need for a peak-time natural gas engine, one of the highest emission sources for electricity generation. This impressive system-level impact was created by a humble group of early program adopters with an average savings of just 0.12 kWh per participating household.


This is, in fact, exactly what load flexibility is trying to achieve. Collective actions made up of small individual changes are a key element of grid decarbonization and translate into system-wide emissions savings. In the most extreme cases, these small collective actions can potentially even avoid the more catastrophic situation of grid outages as recently seen around the country. The reason is that to support higher than usual energy demands, typically because of an extreme weather event, utilities have to activate their most carbon-intensive quick-response plants, so-called “peaker plants.” By strategically organizing collective action to reduce demands on the grid during these peak times, we are collectively able to have a greater emissions sum impact than might appear from its energy parts.

Image: An emissions heat map of the northern California electric grid. Decreasing electricity usage during peak emissions time with load flexibility techniques has an increased benefit in terms of emissions reductions than the same usage decrease during low emissions times.
Image by PAE using data from WattTime

“AND” Not “OR”

This brings us to what is perhaps my favorite aspect of load flexibility. When discussing sustainability, we often run into conversations about responsibility and blame. We compare and contrast the agency individuals have in their daily lives with corporations and industries who closely influence consumer options. Within the community of people who recognize the need for decarbonization and care passionately about the broad adoption of sustainable practices, even we can fall into the trap of asking the wrong question: “Should the burden be on individuals to change their habits?,” OR “Should corporations and industries be held responsible for systemic change?” In asking the question in this way we are using the wrong conjunction (and perspective for a solution). In reality, individuals need to make conscious efforts to change AND corporations and industries need to change. Demand response programs are an intriguing example of these paired truths. Changes by the individual directly support changes in the system, and vice versa.

Decarbonization of the electricity sector is one of the most critical system changes needed to reach U.S. climate targets and participation in local demand response programs is one of the more powerful tools we have as individuals to support that transition. Conveniently, it is also one of the easiest. Program registration is usually through your local utility with no cost and perhaps even a small incentive. My local utility, PGE, has several incentives from peak rebate times to smart thermostat programs. Although equipment like smart thermostats and home batteries can make participation easier and increase the benefits, low tech options like light switches and no cook meals work just fine, too.

Images courtesy of PAE

A New Energy Relationship

After a full year of participating in the PGE residential demand response program, my family has dialed in our electrical load reduction strategies. Perhaps more importantly, it has changed my mindset about how and when my home is using energy. As a certified energy geek, I’ve spent more hours than I can count poring over utility emissions profiles and pondering how buildings can more wisely tap into the flow of electrons. By better understanding where and how our electricity comes from, we can better design our buildings and optimize our usage patterns. Embracing the perspective that the solutions are an “and,” and not an “or,” will also allow us to reach an optimized grid-interactive state. But whether you chose the automated solutions or a more manual approach to embark on this path, take it from my kids – make sure to include egg salad sandwiches.

Join me for a webinar with Electrify Now and Portland Sustainable Building Week on grid interactivity on October 13. 

Karina Hershberg is passionate about sustainable development and has 15 years of experience in electrical engineering. She brings a unique perspective to her dual roles in analysis and engineering at PAE. Through data-driven analytics and innovative electrical design, Karina helps projects implement regenerative and resilient solutions. She leads the development of microgrid design, emissions analysis, and campus-scale solutions for the firm. 

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Betting on the nuclear renaissance: How investors are weighing risk amid surging clean energy demand

Published

on

By

Betting on the nuclear renaissance: How investors are weighing risk amid surging clean energy demand

The Sizewell A and B nuclear power stations, operated by Electricite de France SA (EDF), in Sizewell, UK, on Friday, Jan. 26, 2024. Photographer: Chris Ratcliffe/Bloomberg via Getty Images

Bloomberg | Bloomberg | Getty Images

LONDON — Surging power demand has reignited interest in nuclear energy, but vast capital requirements and an uncertain political and regulatory climate raise questions about the sector’s fiscal capacity.

Tech giants are pumping money into nuclear energy investments, looking to power energy-intensive data centers and realize their AI ambitions.

AI and data centers are the “canary in the coal mine,” World Nuclear Association Director General Sama Bilbao y León told CNBC ahead of the conference. “We are finally recognizing that the demand of electricity and energy in general is only going to increase. But the reality is that all sectors of the economy are going to need more electricity.”

In addition to AI, applications range from nuclear energy for the metallurgical industry, which is looking to electrify as fast as possible, to the chemical, maritime and shipping sectors, León said.

The question of how to meet the world’s growing power needs took center stage as chief executives of the world’s biggest uranium and nuclear energy firms, experts and investors gathered for the annual World Nuclear Association (WNA) symposium at the Royal Lancaster London hotel last week.

Opening remarks from Dr Sama Bilbao y León, director general of the World Nuclear Association, at the 2025 conference.

World Nuclear Association

Kicking off discussions at the conference, Leon told attendees in her welcoming speech that the event is a “working summit” looking to move past mere conversation.

Investments in the nuclear value chain through 2025 are projected to increase to $2.2 trillion, according to Morgan Stanley estimates, up from a 2024 forecast of $1.5 trillion. That level of investment raises questions over the role of government, banks and other financial players in providing sufficient fiscal capacity.

Investment challenges

Nuclear energy is said to provide a more reliable, 24/7 energy source compared to renewables, which can be more intermittent. The development of small modular reactors (SMRs) provides a more scalable power solution due to their size. According to the IEA, the payback period of a SMR investment is half the usual 20 to 30-year period for larger scale projects.

But SMRs have yet to reach the commercial stage, and most planned projects won’t come online until 2030. While a significant amount of money is being pledged, there have been no new large-scale nuclear projects in the U.S. in the last 15 years.

“The first positive story with respect to the financial sector with regards to nuclear, is that they are open to financing nuclear,” Mahesh Goenka, founder of market and commercial advisory firm Old Economy, told CNBC on the sidelines of WNA. “That was not the story a few years ago when a lot of banks didn’t want to touch nuclear projects. That has changed. The question now remains, do they have the risk appetite to finance nuclear projects?”

Challenges include over-running budgets, the late delivery of projects due to long construction lead times, the technical complexity of initiatives and difficulties obtaining licenses.

Goenka compared the West to China, where financial institutions are happy to finance nuclear projects because they can be delivered on time and on budget — leading to better margins than on other infrastructure projects. Meanwhile, the West has not built many new reactors in a very long time, so the learning rate is not quite there yet, he said.

Nearly all of the nuclear generating capacity in the U.S. comes from reactors built between 1967 and 1990, with no new constructions until 2013 when work started on the Vogtle units in Georgia. Meanwhile, the last plant to be built in the U.K. was Sizewell B, which started operating in 1995.

Nuclear investments are “inherently political projects,” said Mark Muldowney, managing director of energy, resources and infrastructure at BNP Paribas. He noted that, while clients are much more receptive to the investments, uncertainty over cost and build time remains.

“We are many years away from the situation in which techniques like project finance can be used by themselves to finance large nuclear [projects],” he said during a panel discussion.

“It’s not going to be the contractors, even if they were willing to, and by and large they aren’t, they will be bankrupted by some of the risks that sit with these projects. So it’s either going to be a government, or it’s going to be the electricity consumers of that country, and in some places that could be intermediated by utilities.”

Government backstop still required

Nuclear power plants are among the most capital intensive assets. The U.K., for example, has greenlit the construction of a massive two-reactor nuclear power station on the Suffolk coast that will generate 3.2 gigawatts of electricity — enough, the government says, to provide power for the equivalent of 6 million homes. But costs of the majority government-owned project have jumped to £38 billion, exceeding an initial target of £20 billion.

Other major projects have run into similar issues. The Plant Vogtle in Waynesboro, Georgia, ran several years behind schedule and had a budget that more than doubled during development. The U.K.’s Hinkley Point nuclear power point faced many concerns around security risks during its initial stages, as well as a budget that swelled to an estimated £40 billion.

Trevor Myburgh, senior executive in corporate finance advisory at Eskom, stressed that the private sector cannot be a “silver bullet” and solve the problem of financing nuclear energy.

Public private partnerships are going to be “crucial” in the development of nuclear, particularly in any emerging economy, Myburgh said during a panel discussion on Wednesday.

While some European countries such as Switzerland — which currently has a ban on the construction of any new nuclear plants but has drafted legislation to lift this motion — and Germany remain adverse to nuclear energy, other governments such as those of the U.K., France, and the U.S. have leaned into the energy source.

Earlier this year, U.S. President Donald Trump signed a number of executive orders designed to fast track the development of nuclear reactors and quadruple nuclear generating capacity by 2025.

Such actions from Trump’s administration have put positive nuclear energy policies “on steroids,” said Uranium Royalty Corp CEO Scott Melbye.

“What we’re seeing are really concrete measures being taken by this administration to spur not only the building of small modular reactors, advanced reactors and large reactors, but [also] in the fuel cycle,” Melbye told WNA attendees.

Investor Arfa Karani noted the growing interest from the investor community to find opportunities with startups, particularly those that supply nuclear-adjacent tech.

The U.K. government, in particular has adopted a more “hands-on” approach in helping founders understand how to invest in clean tech, she said.

“The regulation has to figure itself out. It’s no longer a question of, where do we get the capital from? ….because now suddenly it’s become a matter of national security and global power and global dominance,” she told CNBC, adding that commitment Stateside to funding AI and nuclear has meant that “all the insolvable problems suddenly becomes solvable which is very exciting for nuclear.”

Continue Reading

Environment

Solar growth surges, but Trump roadblocks put 55 GW at risk

Published

on

By

Solar growth surges, but Trump roadblocks put 55 GW at risk

The US solar industry put nearly 18 gigawatts (GW) of new capacity on the grid in the first half of 2025. Even as the Trump administration rolled out anti-clean energy policies, solar and storage still made up 82% of all new power added to the grid in the first six months of the year. But the growth picture isn’t as sunny as it looks, according to the SEIA.

Trump’s big bill (HR1) and new administration actions targeting solar have dragged down deployment forecasts. The latest US Solar Market Insight Q3 2025 report from the Solar Energy Industries Association (SEIA) and Wood Mackenzie warns that these policies could cut 44 GW of US solar growth by 2030 – an 18% decline. Compared with pre-HR1 forecasts, that’s a total loss of 55 GW, or 21% fewer solar projects by 2030.

“Solar and storage are the backbone of America’s energy future, delivering the majority of new power to the grid at the lowest cost to families and businesses,” said SEIA president and CEO Abigail Ross Hopper. She added that the administration is “deliberately stifling investment, which is raising energy costs for families and businesses, and jeopardizing the reliability of our electric grid.” Still, Hopper stressed that demand will keep the industry growing because “the market is demanding what we’re delivering: reliable, affordable, American-made energy.”

Ironically, the report found that this year, 77% of new solar capacity has been built in states Trump won. Eight of the top 10 states for new installations — Texas, Indiana, Arizona, Florida, Ohio, Missouri, Kentucky, and Arkansas — all went red in 2024.

Advertisement – scroll for more content

On the manufacturing side, the US added 13 GW of new solar module capacity in the first half of the year, with factories ramping up in Texas, Indiana, and Minnesota. That brings total domestic capacity to 55 GW. But momentum stalled in Q2, with no new upstream manufacturing investment as federal policy uncertainty spooked private capital.

Looking ahead, SEIA and Wood Mackenzie expect solar deployment to land 4% lower than pre-HR1 projections by 2030. Near-term solar growth is buoyed by projects already underway, developers racing against tax credit deadlines, and surging electricity demand as new gas generation becomes pricier and less reliable.

The report also highlights the risk of federal permitting changes. A Department of the Interior order throws up obstructions for solar permits, threatening about 44 GW of planned projects. Arizona, California, and Nevada are expected to be hit hardest.

“There is considerable downside risk for the solar industry if the federal permitting environment creates more constraints for solar projects,” said Michelle Davis, head of solar research at Wood Mackenzie. “The solar industry is already navigating dramatic policy changes as a result of HR1. Further uncertainty from federal policy actions is making the business environment incredibly challenging.”

SEIA has urged Interior Secretary Doug Burgum to reverse course, warning that the administration’s approach could mean lost jobs, higher power bills, and a weaker US economy.

The stakes stretch beyond energy: SEIA notes that if solar growth stalls as projected, the Trump administration will blow its chances at winning the global AI race – something it’s keen to do. Last week, the trade group rolled out a grid reliability policy agenda calling on leaders at all levels of government to shore up the grid with solar and storage to meet surging demand.

Read more: FERC: Solar + wind made up 91% of new US power generating capacity in H1 2025


The 30% federal solar tax credit is ending this year. If you’ve ever considered going solar, now’s the time to act. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Inflation is back – but not here! These EVs are actually CHEAPER for 2026

Published

on

By

Inflation is back – but not here! These EVs are actually CHEAPER for 2026

Inflation is back, with prices rising 2.7% compared to last year (and that doesn’t include food, fuel, or rent, which are up even more), which is objectively bad. But it’s not true that everything is getting more expensive. These inflation-busting EVs are heading into 2026 with prices that are lower than they were in 2025!

There’s plenty of reasons for prices to go up or down in a market – everything from tariffs and taxes and increased domestic production to changes in inflation or even just a manufacturerwillingness to take a smaller profit on per-unit sales in order to drive volume. There’s a little bit of all of that happening in the American EV market this year, especially in the face of the expiring Federal EV tax credit that kind of makes most EVs cost $7,500 more than they would have otherwise.

That said, as I was putting this list together, I realized there were plenty of ways for me to present these MY26 price cuts. “Best deals?” Too opinion-based. “Biggest discounts by percentage?” Too much math. In the end, I went with alphabetical order, by make. Enjoy!

Cadillac OPTIQ


Cadillac-OPTIQ-EV
Cadillac OPTIQ; via GM.

Cadillac is the industry’s luxury EV leader these days – and for good reason. Its electric crossovers are good-looking, have long range, great acceleration, and ultra-fast charging. Heck, they can even power your home in a pinch.

Advertisement – scroll for more content

Even so, the powers that be at GM are worried about how their EV sales will fare in an American without a $7,500 Federal EV tax credit, so they’re offering a rear-wheel-drive version of the OPTIQ crossover with 300 miles of range for the 2026 model year with a starting price that’s nearly $2,000 lower than the least-expensive 2025.

Chevy Silverado EV


Silverado EV hauling a John Deere tractor; via GM.

Chevy is crushing it right now. After setting EV range records and surpassing Ford in EV sales this semmer, Chevy is now the fastest-growing domestic EV brand in the US – and they’re seemingly intent on keeping that momentum into 2026 with a more affordable WT trim level that starts at $54,895, compared to $57,095 for the ’25 WT Standard Range.

The financial picture is looking rosier at the top of the Silverado EV model range, too. The range-topping model for 2026 is the $88,695 Trail Boss, while the $97,895 RST Max Range topped the 2025 lineup.

Mercedes-Benz EQS


These Cars Are Losing Value So Fast It’s Almost Impressive
2023 EQS, via Mercedes-Benz.

Despite being objectively capable, technologically-advanced, and supremely luxurious long-range electric vehicles, the Mercedes EQS and EQS SUVs were saddled with a somewhat anonymous, jellybean-like styling language that’s seen the flagship EVs struggle to find a foothold in the ultra-luxury segment they inhabit.

To that end, Mercedes kicked off its 2025 with big discounts on its in-stock EQS and EQS SUVs, and is responding to lower-than-expected market demand by reducing the cars’ MSRPs. In the case of the EQS SUV, by an inflation-busting $15,000 (!).

Toyota bZ


Toyota bZ electric SUV for 2026; via Toyota.

For 2026, Toyota has axed the bZ4X name and added a raft of both functional and cosmetic improvements to its five-passenger electric crossover, including body color fenders, up to 25% more range, and – thanks to a new thermal management system and battery preconditioning – a bigger battery that can charge from 10-80% capacity in about thirty minutes.

Even with those upgrades, the new and improved 2026 Toyota bZ is cheaper than the outgoing bZ4X, starting at $34,900 – or $2,170 less than the outgoing model.

Disclaimer: the prices above were sourced from CarsDirectMotor1, and a number OEM websites. All offers were current as of 07SEP2025, and all links provided are from trusted affiliates. These prices may not be available in every market, with every discount, or for every buyer (the standard “with approved credit” fine print should be considered implied). Check with your local dealer(s) for more information.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending