Connect with us

Published

on

By Karina Hershberg, PE

For most of human history, work and activity has been shaped by the sun. During the day, humans could farm, socialize, and build. At sunset, activity had to slow down, and shelter found. Energy was only used when energy was available, during daylight hours. We were leading Net Zero Carbon lives before it was cool.

By first harnessing biofuels and then fossil fuels, life got to expand beyond the confines of sunrise and sunset. Fossil fuels were an amazing portable form of super dense energy that transformed humanity’s path through history and paved the way to our modern lifestyle. Unfortunately, these fuels also have led us to the abyss of the climate crisis in which we currently find ourselves. The question now is whether we can reconcile the negative aspects of our relationship with energy while preserving the positive.

Enter the concept of grid-interactive flexible loads. It doesn’t roll off the tongue quite as easy as “solar” or “wind,” which is perhaps why it hasn’t received the same amount of attention in discussions of sustainability. Yet, a closer look at the plans for energy decarbonization shows flexible loads are just as important to the success of this planet-saving solution as its more famous renewable energy cousins.

The concept of flexible load is called by many names — demand response, peak shaving, grid-interactive efficient buildings, distributed energy resources, and the list goes on. But despite a cornucopia of buzzwords, these terms all describe the same vision of utilizing buildings and their systems to help grids.

Net Zero … What?

Grid-interactivity and flexible loads are in response to the limitations of onsite solar generation and even the aspirations of net zero energy. Net zero energy has been an important goal for the building sector to target, but it technically is not the same as truly being in sync with available energy resources. In many ways, it is a math problem you do at the end of the year to reconcile your annual usage with your annual generation, whereas total decarbonization means your load is served by renewable sources every minute of every hour of every day. So, while net zero energy is a critical step in the right direction, 24/7 emissions-free energy is ultimately where we need to land. If done correctly, it will be a return to a zero-carbon lifestyle, one aligned with the energy flows of nature, while still supporting the advances of modern society.

Images courtesy of PAE

DIY Grid-Interactivity

One of the key solutions for returning to a system in balance with renewable resources is to reimagine buildings and homes as dynamic partners in these larger utility systems instead of simply passive users of the energy services. This more dynamic relationship is where grid-interactive, flexible loads come back into the picture.

Demand response programs come in all shapes and sizes, but to an average homeowner such as myself, they can look as simple as a text message like the one I received on June 22, 2020. It was the inaugural residential “Peak Time Rebate Event” for my utility, Portland General Electrical (PGE). My text message invited me to reduce my household electricity use the following day from 5pm–8pm. In exchange, I would receive an incentive based on my decreased usage.

Source: Portland General Electric

As an electrical engineer at PAE with a passion and expertise for sustainability design and the future of energy, I was excited to participate in this program for the first time. Finally, a chance to make my home my own research project! Living in an older house without air-conditioning, my family was already in the habit of passive cooling techniques for the hot summer days- shades on the windows, avoid opening doors during the hottest parts of the day, and generally try not to add heat to the house. When the time came, 5 PM on June 23, we went around the house trimming our electric loads. It was as straightforward as shutting off lights, avoiding appliance cycles like laundry and dishes, and making simple no-cook egg salad sandwiches for dinner, which the kids reported was the best dinner they had ever had. My children’s questionable culinary preferences aside, it was a nice evening with relatively little impact to our typical routine.

The next day when my phone pinged with a text from PGE, I was excited to see the results of my efforts, but that excitement turned to confusion when I opened the message. I had saved just $.75 — reducing energy consumption from my typical 2.02 kWh to an unremarkable 1.27 kWh. I was deflated. In the coming days, I compared notes with fellow energy geek colleagues and discovered we all had a similar experience — little measurable individual impact from our supposedly critical behavior change. What was going on?

Power of the Collective

It turned out the key to our seeming failure was the scale of our view. When observed through the lens of an individual, the impact to behavior and usage was minimal. But as a collective, the story suddenly changed. After talking with experts at PGE, I learned that the voluntary collective reduction of households in PGE service areas reduced energy demand by 11 MW per event hour compared to expected demands. It put us right on the cusp of eliminating the need for a peak-time natural gas engine, one of the highest emission sources for electricity generation. This impressive system-level impact was created by a humble group of early program adopters with an average savings of just 0.12 kWh per participating household.


This is, in fact, exactly what load flexibility is trying to achieve. Collective actions made up of small individual changes are a key element of grid decarbonization and translate into system-wide emissions savings. In the most extreme cases, these small collective actions can potentially even avoid the more catastrophic situation of grid outages as recently seen around the country. The reason is that to support higher than usual energy demands, typically because of an extreme weather event, utilities have to activate their most carbon-intensive quick-response plants, so-called “peaker plants.” By strategically organizing collective action to reduce demands on the grid during these peak times, we are collectively able to have a greater emissions sum impact than might appear from its energy parts.

Image: An emissions heat map of the northern California electric grid. Decreasing electricity usage during peak emissions time with load flexibility techniques has an increased benefit in terms of emissions reductions than the same usage decrease during low emissions times.
Image by PAE using data from WattTime

“AND” Not “OR”

This brings us to what is perhaps my favorite aspect of load flexibility. When discussing sustainability, we often run into conversations about responsibility and blame. We compare and contrast the agency individuals have in their daily lives with corporations and industries who closely influence consumer options. Within the community of people who recognize the need for decarbonization and care passionately about the broad adoption of sustainable practices, even we can fall into the trap of asking the wrong question: “Should the burden be on individuals to change their habits?,” OR “Should corporations and industries be held responsible for systemic change?” In asking the question in this way we are using the wrong conjunction (and perspective for a solution). In reality, individuals need to make conscious efforts to change AND corporations and industries need to change. Demand response programs are an intriguing example of these paired truths. Changes by the individual directly support changes in the system, and vice versa.

Decarbonization of the electricity sector is one of the most critical system changes needed to reach U.S. climate targets and participation in local demand response programs is one of the more powerful tools we have as individuals to support that transition. Conveniently, it is also one of the easiest. Program registration is usually through your local utility with no cost and perhaps even a small incentive. My local utility, PGE, has several incentives from peak rebate times to smart thermostat programs. Although equipment like smart thermostats and home batteries can make participation easier and increase the benefits, low tech options like light switches and no cook meals work just fine, too.

Images courtesy of PAE

A New Energy Relationship

After a full year of participating in the PGE residential demand response program, my family has dialed in our electrical load reduction strategies. Perhaps more importantly, it has changed my mindset about how and when my home is using energy. As a certified energy geek, I’ve spent more hours than I can count poring over utility emissions profiles and pondering how buildings can more wisely tap into the flow of electrons. By better understanding where and how our electricity comes from, we can better design our buildings and optimize our usage patterns. Embracing the perspective that the solutions are an “and,” and not an “or,” will also allow us to reach an optimized grid-interactive state. But whether you chose the automated solutions or a more manual approach to embark on this path, take it from my kids – make sure to include egg salad sandwiches.

Join me for a webinar with Electrify Now and Portland Sustainable Building Week on grid interactivity on October 13. 

Karina Hershberg is passionate about sustainable development and has 15 years of experience in electrical engineering. She brings a unique perspective to her dual roles in analysis and engineering at PAE. Through data-driven analytics and innovative electrical design, Karina helps projects implement regenerative and resilient solutions. She leads the development of microgrid design, emissions analysis, and campus-scale solutions for the firm. 

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Wisconsin’s first 3 NEVI-funded EV fast charging stations are open

Published

on

By

Wisconsin's first 3 NEVI-funded EV fast charging stations are open

Wisconsin’s first three EV fast charging stations using funding from the National Electric Vehicle Infrastructure (NEVI) Formula program are now online.

The EV fast charging stations are in Ashland, Chippewa Falls, and Menominee, in western Wisconsin, which are rural areas that see a lot of visitors due to tourism and their location along key highway corridors.

As is required by the NEVI program, all three charging stations contain four ports with both CCS and J3400 connectors, and each station can deliver up to 150 kW per port.

NEVI-funded charging stations must also have 24-hour public accessibility and provide amenities like restrooms, food and beverages, and shelter, and must be sited within one travel mile of the Alternative Fuel Corridor.

The stations are located at local Kwik Trips, a Wisconsin-based gas station that serves 12 million customers weekly at more than 880 locations across six states, making the charging experience easy to find and increasing consumer trust.

“It’s great to see more states expanding the NEVI network and filling in coverage gaps for drivers and riders,” said Gabe Klein, executive director of the Joint Office of Energy and Transportation. “EV charging often happens in communities. Whether it’s parents visiting their kids at college, families staying at their cabins, or people road-tripping on Interstate 94 for the holidays – expanding the network gives consumers accessible options to charge their vehicles.”

The stations are part of Kwik Trip’s Kwik Charge program, which will provide DC fast chargers to guests traveling throughout the Midwest. Kwik Trip has received $8.1 million in NEVI funds in Wisconsin to install chargers at 24 of its locations. The company is building an app using Driivz’s software so EV drivers can find Kwik Charge chargers and check charger availability and pricing.

Read more: Kwik Trip is installing DC fast chargers across the Midwest


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days

Published

on

By

The California grid ran on 100% renewables with no blackouts or cost rises for a record 98 days

A new study published in the journal Renewable Energy uses data from the state of California to demonstrate that no blackouts occurred when wind-water-solar electricity supply exceeded 100% of demand on the state’s main grid for a record 98 of 116 days from late winter to early summer 2024 for an average (maximum) of 4.84 (10.1) hours per day.

Compared to the same period in 2023, solar output in California is up 31%, wind power is up 8%, and batteries are up a staggering 105%. Batteries supplied up to 12% of nighttime demand by storing and redistributing excess solar energy.

And here’s the kicker: California’s high electricity prices aren’t because of wind, water, and solar energy. (That issue is primarily caused by utilities recovering the cost of wildfire mitigation, transmission and distribution investments, and net energy metering.)

In fact, researchers from Stanford, Lawrence Berkeley National Laboratory, and the University of California, Berkeley found that states with higher shares of renewable energy tend to see lower electricity prices. The takeaway – and the data backs it up – is that a large grid dominated by wind, water, and solar is not only feasible, it’s also reliable.

The researchers concluded:

Despite the rapid growth and high penetration of [wind-water-solar] WWS, the spot price of electricity during the period dropped by more than 50% compared with the same period in the previous year, and no blackouts occurred, giving confidence that the addition of more solar, wind, and batteries should not be a cause for concern.

Mark Z. Jacobson, co-author of the paper and professor of civil and environmental engineering and director of the atmosphere/energy program at Stanford University, explained in an email to Electrek:

This paper shows that the main grid in the world’s fifth-largest economy was able to provide more than 100% of the electricity that it used from only four clean renewable sources: solar, wind, hydroelectric, and geothermal, for anywhere from five minutes to over 10 hours per day for 98 out of 116 days during late winter, all of spring, and early summer, as well as for 132 days during the entire year of 2024, without its grid failing.

The growth of solar, wind, and battery storage, in particular, resulted in fossil gas use dropping 40% during the 116-day period and 25% during the entire year. In comparison with 2023, solar, wind, and battery capacities increased significantly, with batteries doubling in capacity.

The paper also shows that high electricity prices in California have nothing to do with renewables; in fact, without renewables, prices would have been higher.

In fact, 10 of the 11 US states with higher fractions of their demand powered by renewables have among the lowest US electricity prices.

Instead, in California, the spot price of electricity dropped by over 50% during the period of interest between 2023 and 2024, indicating it was easier to match demand with supply with the increase in renewables and batteries in 2024.

Read more: New CA smart grid law will help solar and fix the grid by… simply replacing wires


To limit power outages and make your home more resilient, consider going solar with a battery storage system. In order to find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and you share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Watch the Porsche Taycan Turbo GT smoke a Ferrari SF90 and Yamaha R1M in a drag race

Published

on

By

Watch the Porsche Taycan Turbo GT smoke a Ferrari SF90 and Yamaha R1M in a drag race

Is Porsche’s new Taycan faster than a Ferrari SF90 or Yamaha R1M? In an epic new drag race, the Porsche Taycan Turbo GT flexed its power, leaving the Ferrari and Yamaha bike in the dust. Watch the video below.

Porsche Taycan Turbo GT races a Ferrari and Yamaha

Porsche unveiled the Turbo GT model after introducing the upgraded Taycan in February. The new Porsche Taycan has significant improvements, including more range and performance.

The Taycan Turbo GT is Porsche’s fastest production car yet. With up to 1,092 hp, the electric sports car, equipped with its Wiessach Package, can hit 0 to 60 mph in just 2.1 seconds.

Porsche’s GT model took the title from the Tesla Model S Plaid as the fastest electric series production car at the Weathertech Raceway Laguna Seca in California earlier this year. With a lap time of 1:27:87, Porsche topped the previous record of 1:30:30 set by the Tesla Model S Plaid in 2020.

Is the Porsche Taycan Turbo GT fast enough to beat a Ferrari SF90 and Yamaha R1M? The folks at Carwow put them up against one another in a drag race to see.

Porsche Taycan Turbo GT vs Ferrari SF90 vs Yamaha R1M drag race (Source: Carwow)

The Taycan goes up against the SF90 with 769 hp from a 4.0 liter twin-turbo V8 combined with three electric motors. Meanwhile, the Yamaha RM1 is powered by a 1 liter 4 stroke engine, which is good for 200 hp.

You can see that Porsche had no problem handling the Ferrari and Yamaha in the first race. Even with the Ferrari jumping the line in the next race, the Taycan proves its might, beating both to the line. After a few more attempts, the Porsche remained undefeated.

Porsche-Taycan-Turbo-GT-Ferrari
Porsche Taycan Turbo GT with Weissach Package (Source: Porsche AG)

The Taycan Turbo GT completed a quarter-mile in 9.9 seconds, compared to the Ferrari SF90’s 10.0 seconds and the Yamaha RM1’s 10.3 seconds.

With all that power, Porsche’s Taycan Turbo GT, with the Weissach package, comes with a hefty price tag, starting at $230,000. The base 2025 Porsche Taycan starts at $99,400, while the more expensive Turbo and Turbo S trims start at $173,600 and $209,000, respectively.

After finally getting its hands on one, the GT model already took down one of the kings of Carwow’s drag strip. Which vehicle will it take down next?

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending