Connect with us

Published

on

As states reach higher toward 100% renewable operation, energy storage will be key to enabling a more variable power supply. But no single technology will be a silver bullet for all our energy storage needs.

Rather, a portfolio of storage solutions makes best economic sense for future energy systems, according to a recent National Renewable Energy Laboratory (NREL) analysis titled “Optimal energy storage portfolio for high and ultrahigh carbon-free and renewable power systems,” published in Energy & Environmental Science.

“The fact is, every energy system is different, with different demand, renewable deployment, weather, etc.,” said Omar J. Guerra, NREL researcher and lead author on the paper. “We have found that energy storage enables the lowest cost of energy across different timescales and economic circumstances on high-renewable systems, which means we are looking at a combination of storage technologies for the future grid.”

Storage Technology Trade-Offs

Guerra and researchers Joshua Eichman and Paul Denholm used a custom high-resolution optimization model to compare energy storage combinations across the United States. The researchers found that geographic variation, among other factors, can drastically shape an energy storage portfolio. For example, the California Independent System Operator (CAISO) grid is solar-driven, discharging seasonal storage for around 50 days to cover winter months in the model, whereas the wind-driven Midcontinent Independent System Operator (MISO) could deploy shorter-duration seasonal storage (but still much longer than most currently deployed storage technologies) with capacity of 5–14 days.

Normalized state of charge (SOC) for short-duration (SD), long-duration (LD1 and LD2), and seasonal storage (SS) in CAISO and MISO. (a) Normalized SOC for devices on CAISO with 100% renewable energy mix. (b) Normalized SOC for devices on MISO with 100% renewable energy mix. SOC = 1 (dark red) implies that the storage device is full. SOC = 0 (light red) implies that the storage device is empty.

The storage technologies face fundamental trade-offs in efficiency and capital costs for both the power and energy component, which is exactly why multiple technologies are useful. Short-duration (intraday) storage like Li-ion batteries have higher efficiencies but also high energy-related costs, while longer-duration (daily) storage like compressed air or pumped thermal have lower energy-related costs but are less efficient.

“With very high or 100% renewable power systems, we need to be conscious of what storage mix is best for which locations or systems. The costs, including costs of avoided CO2 emissions, vary substantially with choice of storage portfolios,” Guerra said.

Storage Portfolio for 100% Renewables

The researchers produced some surprising results for ultrahigh renewable systems: As a system approaches 100% renewable operation, an increasing portion of its storage portfolio would benefit from multiple-day to seasonal storage capacity. This is because of the increasing seasonal mismatch of the remaining load and the supply of renewable resources. However, on a grid like CAISO, shorter-duration storage is more effective at smoothing the diurnal swings of solar.

As seasonal storage becomes a bigger player when nearing 100% renewable systems, another surprising strategy appears in which storage-to-storage charging becomes economically advantageous. And, as a result, renewable curtailment begins to drop because more of the renewable power can be directed to storage. These dynamics for ultrahigh renewable systems highlight how competing factors can widely affect an optimal storage portfolio.

As the CAISO (top) and MISO (bottom) systems approach 100% renewable operation, curtailment of renewables begins to decline because seasonal storage becomes cost-effective and increases the system’s storage capacity.

Impact on Power Industry

Findings from the study are imminently important for system operators, technology developers, power providers, and the wider industry. The chief message for these groups is that an ideal energy storage portfolio could look significantly different from one region to the next and will vary with the percentage of renewables. As more cities and states set clean-energy targets, stakeholders that are planning 10 or 20 years ahead should be tuned-in to the broader energy storage technology space and how it fits into their systems.

What Is Next?

Now that the researchers have established substantial cost differences in storage deployments, future work will focus on a more comprehensive assessment of the value of storage.

“We need a more holistic approach,” Guerra said. “Storage technologies are very flexible and can be used for a variety of grid services. Our next step will be to understand the full range of energy storage benefits to inform optimal storage portfolios.”

Learn more about NREL’s energy analysis and energy storage research.

Article courtesy of National Renewable Energy Laboratory (NREL).

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Published

on

By

Classic Jeep Grand Wagoneer gets a battery electric makeover [video]

Texas-based tuning firm Vigilante 4×4 is known for its wild, high-horsepower Jeep SJ Hemi restomods – but they’re more than just a hot rod shop. To prove it, they’ve developed a bespoke, all-electric skateboard chassis designed to turn the classic Jeep Grand Wagoneer into a modern, desirable electric SUV.

The scope of the Vigilante 4×4 electric chassis project is truly impressive. More than just a Jeep SJ frame with an electric drive train bolted in, the chassis is a completely fresh design that utilizes precise 3D scans of the original SJ Wagoneers, Grand Wagoneers, and J-Trucks to establish hard points, then fitted with low-slung battery packs to give the electric restomods superior weight balance, a lower center of gravity, and objectively improved ride and handling compared to its classic, ICE-powered forefathers.

The result is a purpose-built platform that delivers power to the wheels through a dual-motor system – one mounted in the front, and one at the rear – to provide a permanent, infinitely variable four-wheel drive system that offers both on-road performance and the kind of off-road capability that made the Grand Wagoneer famous in the first place.

Vigilante 4×4 electric Jeep SJ


“This isn’t a replacement for our Vigilante HEMI offerings,” reads the official copy. “It’s a total revisit of the Vigilante platform under electric power.”

Advertisement – scroll for more content

The company emphasizes that its new chassis is still in the prototype stages. As such, there are no specs, there is no pricing, there are no range estimates. Despite it all, the response from Jeep enthusiasts has already been strong. “Keep in mind this is our first prototype,” a spokesperson said. “There’s still a lot of work to be done – but the journey has begun.”

Electrek’s Take


Electric SJ chassis; Vigilante 4×4.

Retro done wrong – think the Dodge Charger Daytona EV or VW ID.Buzz – is a disaster. Always. If that nostalgic tone is just a little bit off, the song doesn’t work. The heartstrings don’t pull. Done right, however, the siren song of nostalgia will have you putting a second mortgage on your house to put a Singer Porsche or ICON Bronco in your garage.

It’s too soon to tell what side of that line the Vigilante 4×4 Jeep SJ will eventually fall, but one thing (at least) is certain: it’s closer to the mark than that Wagoneer S.

SOURCE | IMAGES: Vigilante 4×4, via Mopar Insiders.


If you’re considering going solar, it’s always a good idea to get quotes from a few installers. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. It has hundreds of pre-vetted solar installers competing for your business, ensuring you get high-quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use, and you won’t get sales calls until you select an installer and share your phone number with them. 

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

EQORE bags $1.7M to bring smart storage to power-hungry factories

Published

on

By

EQORE bags .7M to bring smart storage to power-hungry factories

EQORE, a distributed battery storage startup based in Somerville, Massachusetts, has raised $1.7 million in seed funding to help industrial buildings tackle rising electricity costs. The round was oversubscribed and includes backing from the Massachusetts Clean Energy Center (MassCEC), Henry Ford III of Ford Motor Company, and Jonathan Kraft of The Kraft Group.

The timing couldn’t be more relevant. Data centers are booming, and that demand is slamming an already stressed grid. Big, utility-scale batteries help at the grid level, but they can’t fix the bottlenecks happening on local distribution networks. That’s where onsite storage steps in — storing energy when demand is low and discharging it when demand spikes, which helps stabilize costs for both the grid and the businesses using it.

MassCEC’s head of investments, Susan Stewart, said, “What excites us the most about EQORE’s technology is the dual impact: grid support and customer savings.” She noted that commercial and industrial buildings are ideal hosts for battery storage, but haven’t gotten much attention until now. “EQORE is closing that gap.”

Investor Randolph Mann highlighted what makes the company stand out: “By uniting advanced controls with high‑resolution metering and true end‑to‑end service, EQORE finally makes commercial behind-the-meter storage effortless and financially compelling for businesses.”

Advertisement – scroll for more content

EQORE comes out of MIT’s Sandbox program and delta v accelerator and is currently part of the Harvard Climate Entrepreneurs Circle incubator. CEO and cofounder Valeriia Tyshchenko, a third‑generation engineer from Ukraine and MIT graduate, said the new funding will help the company scale alongside its existing revenue.

With the seed round closed, EQORE plans to grow its team and ramp up battery deployments at energy-intensive manufacturing facilities. The company doesn’t just install batteries; it operates them. Its autonomous software shifts when a facility uses power based on market conditions and utility incentives, reshaping load in real-time without disrupting operations.

Read more: Battery boom: 5.6 GW of US energy storage added in Q2


If you’re looking to replace your old HVAC equipment, it’s always a good idea to get quotes from a few installers. To make sure you’re finding a trusted, reliable HVAC installer near you that offers competitive pricing on heat pumps, check out EnergySage. EnergySage is a free service that makes it easy for you to get a heat pump. They have pre-vetted heat pump installers competing for your business, ensuring you get high quality solutions. Plus, it’s free to use!

Your personalized heat pump quotes are easy to compare online and you’ll get access to unbiased Energy Advisors to help you every step of the way. Get started here. – *ad

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Check out Hyundai’s cool new off-road electric SUV concept [Images]

Published

on

By

Check out Hyundai's cool new off-road electric SUV concept [Images]

Hyundai took the sheets of its new off-road electric SUV, the Crater Concept, at the LA Auto Show. Here’s our first look at the compact off-roader.

Meet Hyundai’s new off-road SUV, the Crater Concept

We knew it was coming after Hyundai teased the off-road SUV earlier this week, hidden under a drape. Hyundai took the sheets off the Crater Concept at the LA Auto Show on Thursday, giving us our first real look at the rugged off-roader.

Hyundai refers to it as a compact off-road SUV that’s inspired by extreme events. The concept was brought to life at the Hyundai America Technical Center in Irvine, California.

The off-road SUV draws design elements from Hyundai’s Extra Rugged Terrain (XRT) models, such as the IONIQ 5 XRT, Santa Cruz XRT, and the new Pallisade XRT Pro.

Advertisement – scroll for more content

Although it’s a concept, Hyundai said the Crater Concept is a testament to its commitment to designing future XRT vehicles that are more functional, more capable, and more emotional.

Hyundai-off-road-SUV
The Hyundai Crater off-road SUV Concept (Source: Hyundai)

“CRATER began with a question: ‘What does freedom look like?’ This vehicle stands as our answer,” Hyundai’s global design boss, SangYup Lee said.

The off-road SUV features Hyundai’s new Art of Steel design theme, first showcased on the THREE concept at the Munich Motor Show in September.

Hyundai-off-road-SUV
The Hyundai Crater Concept (Source: Hyundai)

Hyundai said the design team was guided by one clear goal: To create a rugged and capable vehicle that’s designed to go anywhere. The Crater Concept embodies that vision with added wide skid plates, 33″ off-road tires, limb risers, rocker panels, and a roof platform.

Hyundai designed the interior for “tech-savvy adventure seekers,” with a singular design centered around a high-brow crash pad that stretches across the dashboard.

Hyundai-Crater-off-road-SUV
The Hyundai Crater Concept (Source: Hyundai)

The concept also swaps the traditional infotainment setup for a head-up display that spans the entire front window, which Hyundai said includes a live rearview camera.

Hyundai’s off-roader includes a new Off-Road Controller for front and rear locking differentials, as well as a terrain selector with modes including Sand, Snow, and Mud. Other off-road features include downhill brake control, trailer brake control, a compass, and an altimeter.

Although Hyundai said it was electric, it didn’t reveal any further details about the powertrain. The off-road SUV could be a battery-electric or fuel-cell-electric vehicle.

Like the new Nexo, Hyundai’s hydrogen fuel cell vehicle, the concept features “HTWO” lamps exclusive to its FCEVs.

Earlier this week, the design team at Hyundai Design North America also introduced its new design and ideation studio codenamed “The Sandbox.” The creative design studio is set to serve as a global hub for future XRT vehicles and gear.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending