Connect with us

Published

on

The ocean was calm when the Peregrine Falcon ship left the harbor in Homer, Alaska, last month with three moorings resting on its deck, all loaded with scientific instruments.

Eighteen hours later, these moorings were lowered into the silty waves where they collected data for two months. Two of the moorings were 12-foot submarine-shaped buoys that floated 60 feet below the inlet’s surface, and the third rested on the sea floor; all three gathered data on the velocity, turbulence, and sediments at the nation’s top-ranked tidal energy site.

A highly energetic corner of the Pacific Ocean, Cook Inlet holds one of the greatest tidal resources on Earth. All that energy has the potential to reduce Alaska residents’ dependence on declining oil and gas production and provide excess renewable energy that could stimulate the Alaskan economy. That is why researchers from the National Renewable Energy Laboratory (NREL) submerged their moorings in Cook Inlet; the data they collected will help identify important details of the opportunities and challenges that come with turning these surging waters into a reliable and renewable power source for Alaskans living on the nearby shore.

But that is no easy feat.

“Models and local knowledge tell us the currents here are extremely strong. There is silt and sea ice in the winter. We expect the turbulence to be intense,” said Levi Kilcher, an NREL senior scientist who leads ocean energy resource assessments like this one.

NREL researchers and crew prepared to deploy three moorings in Cook Inlet, Alaska, in July to collect data for a potential tidal energy site. From left to right: Chris Higgins (Peregrine Falcon), Patrick Verity (Peregrine Falcon), Brian Hunt (TerraSond Limited), Frank Spada (Integral Consulting), Levi Kilcher (NREL), Andrew Smith (TerraSond Limited), Gwen Sovitski, Olivia Cormier (TerraSond Limited), Jeff Johnson (Peregrine Falcon). Photo courtesy of Christopher Pike

Capturing Energy From the Ebb and Flow

Just as wind turbines extract energy from moving air, underwater turbines can create energy from the ebb and flow of the tides. Tidal energy has the potential to provide more than 220 terawatt-hours per year of clean, renewable energy in the United States, which is enough to power 21 million homes. Tidal technologies are promising, with new demonstration projects showing the world that they can operate reliably and efficiently. And yet, it is still an early-stage industry when compared to wind and solar. As of September 2020, only three tidal turbines were operating in the United States.

“So much of our work builds on NREL’s background in wind power,” Kilcher said. “It took time to understand the importance of accounting for turbulence in wind turbine designs. We’re learning from that and getting ahead of the turbulence questions now by making these measurements. But in the ocean, there are so many additional environmental challenges: We’ve also got to deal with sea ice, sediment, marine growth — not to mention the corrosive properties of the salt water itself. So, we’re trying to understand the details of these environmental challenges as well.”

For the Cook Inlet study, Kilcher led a multilaboratory team that included researchers from Pacific Northwest National Laboratory and Sandia National Laboratories. The team also contracted help from TerraSond LimitedOcean Renewable Power Company, and Integral Consulting. NREL has performed similar studies in Puget Sound, Washington, and off the coast of Maine, but the Alaskan environment poses unique challenges: currents that are stronger, sea ice in winter, and sediments that wash into the inlet from the glaciers dotting the nearby mountains. The turbulence stirs up sand and silt from the inlet floor, creating frothy, gray water at the surface and a slurry of sand and gravel at the bottom.

“The strong currents at the site create sand dunes on the sea floor that are 30 feet tall. Instruments have been lost at this site, most likely buried in sand,” Kilcher said. “We’ve used midwater moorings and inflatable chambers in the Tidal Bottom Lander to ensure we get this stuff back.”

Frank Spada (Integral Consulting, left) and Andrew Smith (TerraSond Limited) hold the buoy steady while Patrick Verity (Peregrine Falcon) unshackles it for a ballast test in the Homer harbor, Alaska. Photo courtesy of Christopher Pike

It is an environment Kilcher knows well. He grew up in Homer, a small fishing town on Cook Inlet where he played on the beach of these icy waters, practiced subsistence fishing, and later worked as a deckhand for his father’s freight business. He earned a Ph.D. in oceanography with a focus on ocean turbulence from Oregon State University. Ten years ago, he brought his expertise to NREL’s Water Power team to help design tidal power systems that could, one day, power his hometown.

“I’ve always been attracted to problems that seem unsolvable. Turbulence is one of those problems, and tidal energy has sometimes felt like one too, but the industry is starting to see real success,” Kilcher said.

Now, to help in the effort, Kilcher and his team are gathering some of the information needed to start designing projects in Cook Inlet. In addition to turbulence, researchers are measuring the water’s velocity, salinity, temperature, and the sediment composition and concentration. With that data, they will validate and refine models to paint a much more detailed picture of the site, including how much energy could be generated there and how to build tidal turbines that can withstand the elements.

The detailed understanding of the Cook Inlet tidal energy resource that stems from this project will allow the industry to design tidal turbines that perform reliably for decades in the harsh Cook Inlet environment. Ultimately, this work could also help design turbine arrays that maximize power production while minimizing impacts to marine life and the inlet’s ecosystems.

Transforming Alaska’s Economy With Clean, Affordable, Local Energy

Having access to clean, affordable energy would transform the Alaskan economy, which is currently facing a deep economic recession due to decreased oil and gas production and high energy prices. Alaskan residents depend on oil and gas not just for jobs and state revenue but also for heating and power. Because of their extreme climate, remote location, and lack of infrastructure, they spend twice as much on energy as the average American; many communities pay three times more, according to the Cold Climate Housing Research Center’s 2018 Alaska Housing Assessment.

The Cook Inlet site is estimated to hold as much as 18 gigawatts of tidal energy potential — more than 20 times the amount used by all the road-connected communities of Alaska.

“It’s a huge amount of power that we have access to at our doorstep,” said Chris Rose, executive director of the Renewable Energy Alaska Project, a nonprofit that advances clean energy solutions for Alaska. “The economic and environmental benefits would be immense.”

With affordable energy, local industries could process the raw materials harvested in Alaska, such as wood, minerals, and fish, rather than exporting them to places with cheaper energy prices. Communities could switch from diesel to electric power for transportation and heating. With surplus electricity, companies could even start making hydrogen as a fuel with which to export the state’s vast renewable energy resources.

Tidal power technologies are at a critical stage of development; U.S. and European companies have had increasing success in single-device demonstration projects and are now planning pilot-project arrays that demonstrate long-term reliability and scalability. Cook Inlet’s strong currents and harsh environment are ideal for demonstrating technology robustness. Given these successes, NREL engineers believe tidal technologies could make significant contributions to Alaska’s energy demand in the next decade. This would help transform and revitalize the Alaskan economy and would be a significant contribution to help meet the marine energy industry’s goal of 1 gigawatt of marine energy plants deployed by 2035.

“It’s kind of like saying to the people in Arizona 40 years ago that if solar power ever gets really cheap, we’ll have a bonanza here. Guess what? It happened.” In other words, Rose said, “the time to start investing in tidal energy is now.”

Out in Cook Inlet on the Peregrine Falcon, Kilcher deployed and successfully recovered three moorings to gather the data needed to engineer the next generation of tidal devices. When he returned to the harbor, the sun shone over the snow-covered mountains, and Kilcher looked for the humpback whales the team saw the day before. He thought about the precious data they had just collected and the device engineering it will facilitate. And he thought about the childhood dream that grew from these same waters.

I firmly believe we can find a cleaner future that’s carbon neutral — carbon negative even,” Kilcher said. “I’ve been working for 10 years to make marine energy a part of that solution.”

Find more information on NREL’s resource characterization work.

Article courtesy of National Renewable Energy Laboratory (NREL).

 

Appreciate CleanTechnica’s originality? Consider becoming a CleanTechnica Member, Supporter, Technician, or Ambassador — or a patron on Patreon.

 

 


Advertisement



 


Have a tip for CleanTechnica, want to advertise, or want to suggest a guest for our CleanTech Talk podcast? Contact us here.

Continue Reading

Environment

Economists, experts call for governments to ditch hydrogen, go fully electric

Published

on

By

Economists, experts call for governments to ditch hydrogen, go fully electric

In a joint statement, French and German economists have called on governments to adopt “a common approach” to decarbonize European trucking fleets – and they’re calling for a focus on fully electric trucks, not hydrogen.

France and Germany are the two largest economies in the EU, and they share similar challenges when it comes to freight decarbonization. The two countries also share a border, and the traffic between the two nations generates major cross-border flows that create common externalities between the two countries.

At the same time, the EU’s transport sector has struggled to reduce emissions at the same rate as other industries – and road freight in particular is a major contributor to harmful carbon emissions issue due to that industry’s heavy reliance on diesel-powered trucks.

And for once, it seems like rail isn’t a viable option:

Advertisement – scroll for more content

While rail remains competitive mainly for heavy, homogeneous goods over long distances. Most freight in Europe is indeed transported over distances of less than 200 km and involves consignment weights of up to 30 tonnes (GCEE, 2024) In most such cases, transportation by rail instead of truck is not possible or not competitive. Moreover, taking into account the goods currently transported in intermodal transport units over distances of more than 300 km, the modal shift potential from road to rail would be only 6% in Germany and less than 2% in France.

FRANCO-GERMAN COUNCIL OF ECONOMIC EXPERTS (FGCEE)

That leaves trucks – and, while numerous government incentives currently exist to promote the parallel development of both hydrogen and battery electric vehicle infrastructures, the study is clear in picking a winner.

“Policies should focus on battery-electric trucks (BET) as these represent the most mature and market-ready technology for road freight transport,” reads the the FGCEE statement. “Hence, to ramp-up usage of BET public funding should be used to accelerate the roll-out of fast-charging networks along major corridors and in private depots.”

The appeal was signed by the co-chair of the advisory body on the German side is the chairwoman of the German Council of Economic Experts, Monika Schnitzer. Camille Landais co-chairs the French side. On the German side, the appeal was signed by four of the five experts; Nuremberg-based energy economist Veronika Grimm (who also sits on the National Hydrogen Council, which is committed to promoting H2 trucks and filling stations) did not sign.

You can read an English version of the CAE FGCEE joint statement here.

Electrek’s Take

Hydrogen-sceptical truck maker MAN to produce limited series of 200 vehicles with H2 combustion engines
MAN hydrogen semi; via MAN Trucks.

MAN Trucks’ CEO famously said that it was “impossible” for hydrogen to compete with BEVs, and even committed to building 200 hydrogen-powered semi truck to prove out that hypothesis.

He’s not alone. MAN’s board member for research and development, Frederik Zohm, said that the company is the one saying hydrogen still has years to go. “(MAN) continues to research fuel cell technology based on battery electrics,” he said, in a statement quoted by Hydrogen Insight, before another board member added that, “we (MAN) expect that, in the future, we will be able to best serve the vast majority of our customers’ transport applications with battery-electric trucks.”

With companies like Volvo and Renault and now Mercedes racking up millions of miles on their respective battery electric semi truck fleets, it’s no longer even close. EV is the way.

SOURCE | IMAGES: CAE FGCEE; via Electrive.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

Quick Charge | the terrifying Trump tariffs are finally upon us!

Published

on

By

Quick Charge | the terrifying Trump tariffs are finally upon us!

On today’s tariff-tastic episode of Quick Charge, we’ve got tariffs! Big ones, small ones, crazy ones, and fake ones – but whether or not you agree with the Trump tariffs coming into effect tomorrow, one thing is absolutely certain: they are going to change the price you pay for your next car … and that price won’t be going down!

Everyone’s got questions about what these tariffs are going to mean for their next car buying experience, but this is a bigger question, since nearly every industry in the US uses cars and trucks to move their people and products – and when their costs go up, so do yours.

Prefer listening to your podcasts? Audio-only versions of Quick Charge are now available on Apple PodcastsSpotifyTuneIn, and our RSS feed for Overcast and other podcast players.

New episodes of Quick Charge are recorded, usually, Monday through Thursday (and sometimes Sunday). We’ll be posting bonus audio content from time to time as well, so be sure to follow and subscribe so you don’t miss a minute of Electrek’s high-voltage daily news.

Advertisement – scroll for more content

Got news? Let us know!
Drop us a line at tips@electrek.co. You can also rate us on Apple Podcasts and Spotify, or recommend us in Overcast to help more people discover the show.

FTC: We use income earning auto affiliate links. More.

Continue Reading

Environment

SunZia Wind’s massive 2.4 GW project hits a big milestone

Published

on

By

SunZia Wind’s massive 2.4 GW project hits a big milestone

GE Vernova has produced over half the turbines needed for SunZia Wind, which will be the largest wind farm in the Western Hemisphere when it comes online in 2026.

GE Vernova has manufactured enough turbines at its Pensacola, Florida, factory to supply over 1.2 gigawatts (GW) of the turbines needed for the $5 billion, 2.4 GW SunZia Wind, a project milestone. The wind farm will be sited in Lincoln, Torrance, and San Miguel counties in New Mexico.

At a ribbon-cutting event for Pensacola’s new customer experience center, GE Vernova CEO Scott Strazik noted that since 2023, the company has invested around $70 million in the Pensacola factory.

The Pensacola investments are part of the announcement GE Vernova made in January that it will invest nearly $600 million in its US factories and facilities over the next two years to help meet the surging electricity demands globally. GE Vernova says it’s expecting its investments to create more than 1,500 new US jobs.

Advertisement – scroll for more content

Vic Abate, CEO of GE Vernova Wind, said, “Our dedicated employees in Pensacola are working to address increasing energy demands for the US. The workhorse turbines manufactured at this world-class factory are engineered for reliability and scalability, ensuring our customers can meet growing energy demand.”

SunZia Wind and Transmission will create US history’s largest clean energy infrastructure project.

Read more: The largest clean energy project in US history closes $11B, starts full construction


If you live in an area that has frequent natural disaster events, and are interested in making your home more resilient to power outages, consider going solar and adding a battery storage system. To make sure you find a trusted, reliable solar installer near you that offers competitive pricing, check out EnergySage, a free service that makes it easy for you to go solar. They have hundreds of pre-vetted solar installers competing for your business, ensuring you get high quality solutions and save 20-30% compared to going it alone. Plus, it’s free to use and you won’t get sales calls until you select an installer and share your phone number with them.

Your personalized solar quotes are easy to compare online and you’ll get access to unbiased Energy Advisers to help you every step of the way. Get started here. –trusted affiliate link*

FTC: We use income earning auto affiliate links. More.

Continue Reading

Trending