Connect with us

Published

on

After spending nearly half a year, every year, gathering and calculating carbon emissions data on spread sheets, Salesforce.com’s climate team was fed up. So in 2017 they built an app to crunch the numbers – and now they sell it for $4,000 (roughly Rs. 3 lakh) a month.

As global companies prepare pledges to help stop climate change, one of the first problems they face is quantifying their emissions. The second is understanding if their solutions work.

That need is fuelling a boom in carbon accounting software by big companies like Salesforce and startups as well, along with some skepticism of parts of the process.

Microsoft is previewing a tool for calculating emissions called Microsoft Cloud for Sustainability, aiming to make it available by mid-2022.

On Thursday, Arizona-based carbon accounting startup Persefoni said it raised over $100 million (roughly Rs. 750 crore), the biggest venture capital funding round so far in the field.

That takes total fundraising this year to nearly $300 million (roughly Rs. 2,250 crore), six times the total for 2020 and over 21 times the funds raised in 2019, according to a Reuters review of data from PitchBook and Climate Tech VC.

Carbon accounting is complex, especially when including emissions beyond a company’s direct control, such as suppliers and use of products, which many companies are trying to do. How does, for example, an automaker account for the steel it buys and the miles driven by its customers? Some in the accounting business call these indirect emissions, often the bulk of a firm’s emissions, the “Pandora’s box” of carbon accounting.

“You have a massive problem in our world of companies that are creating their own methodologies and then black-boxing them. Those are not auditable. In the worst cases, they’re helping companies greenwash,” said Kentaro Kawamori, CEO of Persefoni, which uses a system called the Greenhouse Gas Protocol to compute numbers that get added up into total emissions.

Some argue the accounting is not always worth the effort and skews the focus.

Science Based Targets initiative, a non-profit that helps companies set emissions goals, does not push small companies to produce the emissions beyond the company’s direct control, for example, even as it creates a “net zero” program with a strong focus on indirect emissions.

Snocap, a new climate tech venture capital firm, does not think startups should be asked to measure their environmental impact, especially if their technology is designed to change an industry fundamentally, such as making lab-grown meat.

Taylor Francis, a co-founder of Watershed, a carbon accounting software startup created as fintech firm Stripe tracked its own emission data, hopes customers will use the tool to make decisions about suppliers and emissions.

“If this whole space becomes just about disclosure and publishing a sustainability report once a year, I think that will fall short of what we need to actually beat climate change,” he said.

© Thomson Reuters 2021


Continue Reading

Science

A Nearby Supernova May End Dark Matter Search, Claims New Study

Published

on

By

A Nearby Supernova May End Dark Matter Search, Claims New Study

The pursuit of understanding dark matter, which comprises 85 percent of the universe’s mass, could take a significant leap forward with a nearby supernova. Researchers at the University of California, Berkeley, led by Associate Professor of Physics Benjamin Safdi, have theorised that the elusive particle known as the axion might be detected within moments of gamma rays being emitted from such an event. Axions, predicted to emerge during the collapse of a massive star’s core into a neutron star, could transform into gamma rays in the presence of intense magnetic fields, offering a potential breakthrough in physics.

Potential Role of Gamma-Ray Telescopes

The study was published in Physical Review Letters and revealed that the gamma rays produced from axions could confirm the particle’s mass and properties if detected. The Fermi Gamma-ray Space Telescope, currently the only gamma-ray observatory in orbit, would need to be pointed directly at the supernova, with the likelihood of this alignment estimated at only 10 percent. A detection would revolutionise dark matter research, while the absence of gamma rays would constrain the range of axion masses, rendering many existing dark matter experiments redundant.

Challenges in Catching the Event

For detection, the supernova must occur within the Milky Way or its satellite galaxies—an event averaging once every few decades. The last such occurrence, supernova 1987A, lacked sensitive enough gamma-ray equipment. Safdi emphasised the need for preparedness, proposing a constellation of satellites, named GALAXIS, to ensure 24/7 sky coverage.

Axion’s Theoretical Importance

The axion, supported by theories like quantum chromodynamics (QCD) and string theory, bridges gaps in physics, potentially linking gravity with quantum mechanics. Unlike neutrinos, axions could convert into photons in strong magnetic fields, providing unique signals. Laboratory experiments like ABRACADABRA and ALPHA are also probing for axions, but their sensitivity is limited compared to the scenario of a nearby supernova. Safdi expressed urgency, noting that missing such an event could delay axion detection by decades, underscoring the high stakes of this astrophysical endeavour.

Continue Reading

Science

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Published

on

By

Fastest-Moving Stars in the Galaxy May be Piloted by Aliens, New Study Suggests

Intelligent extraterrestrial civilisations might be utilising stars as massive interstellar vehicles to explore the galaxy, according to a theory proposed by Clement Vidal, a philosopher at Vrije Universiteit Brussel in Belgium. His research suggests that alien species could potentially accelerate their binary star systems to traverse vast cosmic distances. While such a concept is purely hypothetical and unproven, Vidal’s recent paper, which has not undergone peer review, raises intriguing possibilities about advanced extraterrestrial engineering.

Concept of Moving Star Systems

The study was published in the Journal of the British Interplanetary Society. As per a report by LiveScience, the idea revolves around the notion that alien civilisations, instead of building spacecraft for interstellar travel, might manipulate entire star systems to travel across the galaxy. Vidal highlights binary star systems, particularly those involving neutron stars and smaller companion stars, as ideal candidates. Neutron stars, due to their immense gravitational energy, could serve as anchors for devices designed to propel the system by selectively ejecting stellar material.

Vidal explained in the paper that uneven heating or manipulation of magnetic fields on a star’s surface could cause it to eject material in one direction. This process would create a reactionary thrust, propelling the binary system in the opposite direction. The concept provides a way to travel while preserving planetary ecosystems, making it a theoretically viable method for species reliant on their home systems.

Known Examples with High Velocities

Astronomers have identified hypervelocity stars, such as the pulsars PSR J0610-2100 and PSR J2043+1711, which exhibit high accelerations. While their movements are believed to be natural phenomena, Vidal suggests they could be worth further investigation to rule out potential artificial influences.

This theory adds an unconventional angle to the search for intelligent life, expanding possibilities beyond traditional methods of exploration like searching for signals or probes. The research underscores the importance of considering advanced and unconventional methods aliens might employ to navigate the galaxy.

Continue Reading

Science

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

Published

on

By

Hubble Telescope Finds Unexpectedly Hot Accretion Disk in FU Orionis

NASA’s Hubble Space Telescope has provided new insights into the young star FU Orionis, located in the constellation Orion. Observations have uncovered extreme temperatures in the inner region of its accretion disk, challenging current models of stellar accretion. Using Hubble’s Cosmic Origins Spectrograph and Space Telescope Imaging Spectrograph, astronomers captured far-ultraviolet and near-ultraviolet spectra, revealing the disk’s inner edge to be unexpectedly hot, with temperatures reaching 16,000 kelvins—almost three times the Sun’s surface temperature.

A Star’s Bright Outburst Explained

First observed in 1936, FU Orionis became a hundred times brighter in months and has remained a unique object of study. Unlike typical T Tauri stars, its accretion disk touches the stellar surface due to instabilities. These are caused by the disk’s large mass, interactions with companion stars, or material falling inwards. Lynne Hillenbrand, a co-author from Caltech, in a statement said that the ultraviolet brightness seen exceeded predictions, revealing a highly dynamic interface between the star and its disk.

Implications for Planet Formation

As per a report by NASA, the study holds significant implications for planetary systems forming around such stars. The report further quoted Adolfo Carvalho, lead author of the study, saying that while distant planets in the disk may experience altered chemical compositions due to outbursts, planets forming close to the star could face disruption or destruction. This revised model provides critical insights into the survival of rocky planets in young star systems, he further added.

Future Investigations on FU Orionis

The research team continues to examine spectral emission lines in the collected data, aiming to map gas movement in the star’s inner regions. Hillenbrand noted that FU Orionis offers a unique opportunity to study the mechanisms at play in eruptive young stars. These findings, published in The Astrophysical Journal Letters, showcase the ongoing value of Hubble’s ultraviolet capabilities in advancing stellar science.

Continue Reading

Trending