Connect with us

Published

on

Agnikul Cosmos, an Indian space tech startup looking to take advantage of the massive space travel opportunity of the next decade, has been grabbing headlines in the recent times. From signing deals with Alaska Aerospace Corporation in the US, to signing an MoU with ISRO for accessing its infrastructure and technical expertise, Agnikul Cosmos has made giant leaps since its inception in 2017. This IIT Madras incubated startup is currently working on its popular launch vehicle Agnibaan and looks to carry out its first launch in 2022. This Agnibaan launch rocket is being developed to carry up to 100-kg small satellites to low orbit Earth. 

The space company looks to provide a cab-like service to small satellite manufacturers, enabling them to launch from anywhere and anytime from across the globe. Agnikul Cosmos is also looking at ways in which space transportation can be made more affordable and more accessible, for research, technology development, and businesses. In the future, it looks to do at least 20-25 launches every year.  

agnikul cosmos infograph Agnikul Cosmos

Gadgets 360 spoke to Srinath Ravichandran, co-founder and CEO, Agnikul Cosmos to know a bit more about the company’s journey so far and its future plans.  

1. What were you doing before you began Agnikul Cosmos?        

I am an electrical engineer turned Wall Street trader turned aerospace engineer. I have a Bachelor’s degree in electrical engineering from College of Engineering, Guindy, and Masters degree in financial engineering from Columbia University and aerospace engineering from the University of Illinois at Urbana Champaign. When I was working in finance, I realised that my heart was really in engineering. So, I took a leap of faith with quitting the finance job and looks like it has been going okay so far. 

2. What motivated you to begin Agnikul Cosmos? How did you meet your fellow co-founder?    

Story goes back to 2015, when I was in Los Angeles, I visited a lot of universities and other companies and saw that every place worth something had a small satellite waiting to be launched. So, I saw a problem for small satellites accessing space through conventional launch vehicles. It felt similar to what we see in rideshare through ground transportation – say in a bus along with other people – there should be space in the bus, the bus should go to the same place that you want to go and it will start only after the bus is full. All these were pain points for the small satellite manufacturers, we wanted to address this with a cab like solution which can be launched from anywhere and anytime in the globe. This led to the core idea behind Agnikul Cosmos.  

Along with my then friend and now cofounder – Moin, who was running his own business, we decided to pursue this idea a bit. We felt, academic institutions are a good way to start. We created a list of IITs which were working on aerospace related technologies. We cold called and mailed about 70-80 professors. One such cold call got us introduced to Professor Satya Chakkaravarthy from IIT Madras. He believed in our idea and told us that he found the concept of a quick cab service to space quite interesting. Agnikul was basically born at that moment. 

3. What was it like in the first year of being in business? What are your key learnings from the early days?         

Early days were all about figuring out stuff. Though Moin had run businesses in the past and I had networked a lot with multiple startups, doing something in aerospace hardware was new to both of us. Figuring this out and getting a road map out of the idea was the key challenge in the first year. Our key learnings included trying to come up with a story that one could give an investor, and how to pitch ourselves to customers. Luckily, we have always had the support of retired ISRO scientists through Professor Chakravarthy. So, the challenges from a hardware front were more about implementation of the product as opposed to the core design or strategy needed.  

4. What are the challenges in building space technology in the country? 

The main challenge used to be policy and regulation. There was no regulatory authority to license our activities earlier. But currently with the creation of IN-SPACe and policy changes, we see space becoming the next big thing in India. We as a country I believe are in the right place at the right time. 

5. What was the impact of the COVID-19 crisis on your plans?    

As a hardware company, it was very difficult for us to manage the situation without doing any actual hardware testing which created an impact in our launch timeline. During the second wave, we stopped all our Liquid oxygen based testing in order to support the country in the oxygen crisis. However, as a team, we planned all activities in a phased manner despite COVID and we successfully qualified our single piece 3D printed engine right through the crisis. We also created extensive vendor databases to help us have multiple backups in case of problems of supply chain and procurement through the crisis. 

6. In which year did Agnikul Cosmos make considerable progress? Could you offer more details on what happened through that year?    

Every year has been huge in its own way. From our start in December 2017, each year we were able to hit some meaningful milestone. Thankfully, if we have to pick, 2021 has been a remarkable year for us so far as we have tested our second stage engine and also raised our series A which is India’s largest space tech funding round. In addition, we also signed an MoU with the Department of Space which has pushed us much closer towards our dream of launching from Indian soil. 

7. What products have you built so far? What are you working on? 

At present, we are working on testing and integration of various subsystems of Agnibaan. We have successfully designed, realised and qualified our engines. We have successfully fabricated all propulsion subsystems such as pumps and motors and we are actively placing orders for many of the large components of the vehicle such as tanks and structural subsystems. We are planning for our first launch by the end of 2022. 

8. Could you help give a sense of how far Agnikul Cosmos has come in these few years? From when it began to where it is now.  

We incorporated in December 2017 as a four-member team, now we have close to 100 members (YoY – 4, 12, 36, 50, 100) from various backgrounds working together with a dream of making space accessible to everyone. We have raised close to $15 million (roughly Rs. 112 crores)  funding raised over three years of funding every year since 2019 ($0.5 million, $3.5 million, $11 million) and signed a MoU with India Space Research Organisation for utilising their infrastructure and technical expertise. We have also signed agreements with supporting agencies like Leafspace for ground stations. In addition, we have onboarded a few customers across the globe to launch with us. We are still a pre revenue company with customer Letters of Intent steadily increasing over the years. 

9.   How did the ISRO partnership come about? Apart from infrastructure access, how else will it help the business?  

Agnikul is the first company to sign agreements with ISRO including an MoU with ISRO (which happened very recently). This MoU will provide us access to infrastructure for testing multiple subsystems such as engines and avionics packages. Working out of ISRO facilities will give us invaluable guidance besides accelerating our time to get the product flight ready. In addition, we see this partnership as a major step in allowing private players in space sectors to work alongside ISRO. Also, this will help us review our designs with ISRO experts. 

10. Could you speak about the unique 3D-printing tech that you use to build your rockets?  

Most of the parts of our launch vehicle are made through 3D printing. We rely on 3D printing to reduce the fabrication and turnaround time. We have recently realised and qualified our fully 3D printed, single piece and semi cryogenic engine – Agnilet. This will be part of the second stage of our vehicle and it’s one of its kind in the world. We have realised the full-scalemodel and showcased it for the first time in IAC, Dubai.  

11. Is India ready for a space-tech revolution? How long before we have companies that do work at a scale like SpaceX in India? 

With the efforts of our Honourable Prime Minister, Indian Space Research Organisation, space is becoming the next booming thing in India. Environment is very favourable for space startups now and with the number of space companies raising investment, the day is not so far. Very soon India will have its own SpaceX up and running. 

12. Have you thought about ways in which you could reduce the cost of space travel? 

We are a space transportation company – everything that we do has an angle of space travel cost reduction. Starting from highly modular vehicle designs, to efficient energy management systems such as new age batteries, to engines that can be easily manufactured, we believe the cost of space travel can be drastically reduced when one is able to iterate hardware at the speed of software.  

13. What are the other plans for the future?   

Future plans exist from scaling to do at least 20-25 launches a year (a launch on-demand every 2 weeks). We also have plans to make the rocket extremely customisable and tailor it specifically for each satellite’s needs – all satellites are special enough to demand a rocket of their own.  

14. How long before space travel becomes as common as air travel?  

I expect this to be taking 15 years or so in India. Globally, it could happen in seven to eight years. Three things have to happen before we get here – A) Cost of travel has to come down meaningfully, B) Awareness on how reachable space is should go up, C) Rocket Science should not be “rocket science” to get here. Companies such as ourselves are working on all of these areas to make space transportation as common as air transportation. 

15. Do you have any management mantra/ advice that you’d like to share with future entrepreneurs?          

You won’t always have luck but all you have to do is try till that point. I have always had this belief and tell my teammates as well. If you take a graph, and try to plot output vs. hard work, sometimes, for the same amount of hard work you will get more output, you never know when this phase will come. All you have to do is continue with steady, consistent brute force effort and, one day things will suddenly be in your favour. 

16. What is the employee strength? Is Agnikul Cosmos hiring currently?  

We are currently a 100-member team and we are scaling rapidly. We are hiring people for various verticals currently, please do check out our careers page for details and drop your resume at humancapital@agnikul.in too. Anyone who is really really good at anything, has a place at Agnikul! 

Continue Reading

Science

Astronomers Detect Methane in the Atmosphere of the Nearest T Dwarf Star to Earth

Published

on

By

Astronomers Detect Methane in the Atmosphere of the Nearest T Dwarf Star to Earth

The scientists have found methane in the atmosphere of WISEA J181006.18 −101000.5, the T dwarf closest to Earth. The study was published in the online preprint journal arXiv on March 28, and the final, revised version was published on November 17. The WISE1810 is a metal-poor T dwarf planet, which is situated at a distance of 29 light years from the Earth. The effective temperature of the dwarf is reported to be within the range of 800–1,300 K.

Methane Signature Surprises Astronomers

According to a Phys.org report, the finding is made greatly possible by the present 10.4-m Gran Telescopio Canarias (GTC). The detection of methane in the atmosphere of the dwarf planet has further made its classification as T-type instead of L-type, which was earlier suggested in previous studies, the publication notes. The study further reveal that there are no traces of carbon monoxide and potassium in the atmosphere of the WISE1810. 

The study further highlights that the carbon abundance in the planet is estimated to be -1.5 dex, while the effective temperature could be around 1,000 K. The author of the paper further revealed that the low metallicity of the T dwarf planet could be due to the non-detection of atomic potassium. However, a lower temperature could also boost this effect, the report further highlights. The study also found that WISE1810 has a heliocentric velocity of -83 km/s. 

The 10.4-m Gran Telescopio Canarias (GTC) supplies a significant contribution to finishing WISEA J181006.18−101000 observations. Interestingly, the previous observations of the dwarf platent suggested that the atmosphere of the dwarf planet was dominated by hydrogen and water vapour. Moreover, the study further reveals that findings indicates WISE1810 could more likely to be associated with the Milky Way’s thick disk, despite its very low metallicity.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Red Magic 10 Air Launch Set for April 16; Colour Options Revealed



Vivo X200 Ultra Photography Kit Design, Key Features Revealed Ahead of April 21 Launch

Continue Reading

Science

Scientists Finally Discover How Long a Day Lasts on Uranus

Published

on

By

Scientists Finally Discover How Long a Day Lasts on Uranus

Scientists have finally found how about Uranus day length using the most recent analysis of a decade’s worth of Hubble Space Telescope data. As per the scientists, the Uranus holds 17 hours, 14 minutes, and 52 seconds to finish a complete rotation—that is, 28 seconds more than the estimation served by NASA’s Voyager 2 spacecraft. This estimation was made possible through the measurement of the magnetic fields and the radio waves coming from the auras of the planet. This understanding helps one derive surface mapping and alignment estimation in perplexing surroundings. Some of those maps may need to be reconsidered based on the most recent research.

Hubble Refines Uranus’ Spin and Orbit Time

According to reports, the Hubble Space Telescope study verified Uranus completed a revolution in 17 hours, 14 minutes, and 52 seconds. That is 28 seconds more than the NASA mission Voyager 2, from the 1980s.

The report further mentions that through examination of a ten-year record of aurora observations, a team headed by Laurent Lamy at the Paris Observatory in France revealed the magnetic poles of the planet. That long-term monitoring gave even more exact rotation periods—that is, nearly 84 Earth years for Uranus to orbit the sun.

Uranus’ Rotation Refined, Aiding Future Exploration

On Uranus, a day just lasts far longer. More precise rotational time observations of the gas giant should enable scientists to plan visits to investigate it. Unlike on Mars and Earth, savage windstorms make it far more difficult to identify the rotation times of the biggest solar system planets.

The first estimate of Uranus’s spin was shifted closer to the Voyager 2 probe, which made a close-range approach on January 24, 1986. The researchers during that time found out that the planet’s mangetic field was by 59 degrees from celestial north. Moreover, the researchers observed that its rotation axis was 98 degrees offset.

Uranus Spins Sideways with a 17-Hour Day, Scientists Confirm

The report further mentions that Uranus effectively revolves “lying down” compared to Earth; during this period, its magnetic poles find a giant circle as the planet rotates. These highest offsets mean With a safety margin of plus or minus 36 seconds, scientists at the time estimated that Uranus was completing a full revolution in every 17 hours, 14 minutes, and 24 seconds by measuring the magnetic field of the planet as well as radio emissions from aurora at its magnetic poles.

Continue Reading

Science

Farallon Slab Beneath Midwest Pulls Crust Downward, Causing Widespread Thinning

Published

on

By

Farallon Slab Beneath Midwest Pulls Crust Downward, Causing Widespread Thinning

An underground structure beneath central United States has been observed dragging surface materials deep into the Earth. This movement has been linked to an old piece of crust lodged far below the Midwest. Researchers have said this action is pulling rocks from across the continent towards a funnel-shaped region. It is believed this process is causing parts of the crust to thin as material is drawn downward. This phenomenon has been found to affect areas beyond the immediate region.

Underground slab tied to crust loss beneath Midwest

According to the study published in Nature Geoscience, the phenomenon has been tied to the remains of a long-subducted tectonic plate known as the Farallon slab. This slab, which sits around 660 kilometres below the surface, was identified as the driving force behind what scientists refer to as cratonic thinning. Cratons are known to be the stable core regions of continental crust and upper mantle that usually do not undergo change.

The seismic mapping project was led by Junlin Hua during his postdoctoral work at The University of Texas at Austin. He now serves as a professor at the University of Science and Technology of China. In a statement, Hua explained that a wide region is showing signs of thinning. He stated that the study has brought forward a new explanation behind this change.

New seismic method uncovers ‘dripping’ lithosphere

To observe the changes taking place beneath North America, researchers used a method known as full-waveform inversion. This seismic imaging approach allowed them to map the subsurface in high detail. According to Thorsten Becker, Geophysics Chair at UT Austin, this technique offered a better understanding of the link between deep mantle regions and the lithosphere above.

Computer simulations were used to confirm the effect. When the slab was included, the downward movement was visible. When removed, no such feature appeared.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


CMF Phone 2 Pro India Launch Set for April 28; CMF Buds 2, Buds 2a, Buds 2 Plus to Tag Along



WazirX’s Restructuring Scheme Approved by Over 93 Percent Creditors, Refunds to Start Soon

Continue Reading

Trending