Connect with us

Published

on

Agnikul Cosmos, an Indian space tech startup looking to take advantage of the massive space travel opportunity of the next decade, has been grabbing headlines in the recent times. From signing deals with Alaska Aerospace Corporation in the US, to signing an MoU with ISRO for accessing its infrastructure and technical expertise, Agnikul Cosmos has made giant leaps since its inception in 2017. This IIT Madras incubated startup is currently working on its popular launch vehicle Agnibaan and looks to carry out its first launch in 2022. This Agnibaan launch rocket is being developed to carry up to 100-kg small satellites to low orbit Earth. 

The space company looks to provide a cab-like service to small satellite manufacturers, enabling them to launch from anywhere and anytime from across the globe. Agnikul Cosmos is also looking at ways in which space transportation can be made more affordable and more accessible, for research, technology development, and businesses. In the future, it looks to do at least 20-25 launches every year.  

agnikul cosmos infograph Agnikul Cosmos

Gadgets 360 spoke to Srinath Ravichandran, co-founder and CEO, Agnikul Cosmos to know a bit more about the company’s journey so far and its future plans.  

1. What were you doing before you began Agnikul Cosmos?        

I am an electrical engineer turned Wall Street trader turned aerospace engineer. I have a Bachelor’s degree in electrical engineering from College of Engineering, Guindy, and Masters degree in financial engineering from Columbia University and aerospace engineering from the University of Illinois at Urbana Champaign. When I was working in finance, I realised that my heart was really in engineering. So, I took a leap of faith with quitting the finance job and looks like it has been going okay so far. 

2. What motivated you to begin Agnikul Cosmos? How did you meet your fellow co-founder?    

Story goes back to 2015, when I was in Los Angeles, I visited a lot of universities and other companies and saw that every place worth something had a small satellite waiting to be launched. So, I saw a problem for small satellites accessing space through conventional launch vehicles. It felt similar to what we see in rideshare through ground transportation – say in a bus along with other people – there should be space in the bus, the bus should go to the same place that you want to go and it will start only after the bus is full. All these were pain points for the small satellite manufacturers, we wanted to address this with a cab like solution which can be launched from anywhere and anytime in the globe. This led to the core idea behind Agnikul Cosmos.  

Along with my then friend and now cofounder – Moin, who was running his own business, we decided to pursue this idea a bit. We felt, academic institutions are a good way to start. We created a list of IITs which were working on aerospace related technologies. We cold called and mailed about 70-80 professors. One such cold call got us introduced to Professor Satya Chakkaravarthy from IIT Madras. He believed in our idea and told us that he found the concept of a quick cab service to space quite interesting. Agnikul was basically born at that moment. 

3. What was it like in the first year of being in business? What are your key learnings from the early days?         

Early days were all about figuring out stuff. Though Moin had run businesses in the past and I had networked a lot with multiple startups, doing something in aerospace hardware was new to both of us. Figuring this out and getting a road map out of the idea was the key challenge in the first year. Our key learnings included trying to come up with a story that one could give an investor, and how to pitch ourselves to customers. Luckily, we have always had the support of retired ISRO scientists through Professor Chakravarthy. So, the challenges from a hardware front were more about implementation of the product as opposed to the core design or strategy needed.  

4. What are the challenges in building space technology in the country? 

The main challenge used to be policy and regulation. There was no regulatory authority to license our activities earlier. But currently with the creation of IN-SPACe and policy changes, we see space becoming the next big thing in India. We as a country I believe are in the right place at the right time. 

5. What was the impact of the COVID-19 crisis on your plans?    

As a hardware company, it was very difficult for us to manage the situation without doing any actual hardware testing which created an impact in our launch timeline. During the second wave, we stopped all our Liquid oxygen based testing in order to support the country in the oxygen crisis. However, as a team, we planned all activities in a phased manner despite COVID and we successfully qualified our single piece 3D printed engine right through the crisis. We also created extensive vendor databases to help us have multiple backups in case of problems of supply chain and procurement through the crisis. 

6. In which year did Agnikul Cosmos make considerable progress? Could you offer more details on what happened through that year?    

Every year has been huge in its own way. From our start in December 2017, each year we were able to hit some meaningful milestone. Thankfully, if we have to pick, 2021 has been a remarkable year for us so far as we have tested our second stage engine and also raised our series A which is India’s largest space tech funding round. In addition, we also signed an MoU with the Department of Space which has pushed us much closer towards our dream of launching from Indian soil. 

7. What products have you built so far? What are you working on? 

At present, we are working on testing and integration of various subsystems of Agnibaan. We have successfully designed, realised and qualified our engines. We have successfully fabricated all propulsion subsystems such as pumps and motors and we are actively placing orders for many of the large components of the vehicle such as tanks and structural subsystems. We are planning for our first launch by the end of 2022. 

8. Could you help give a sense of how far Agnikul Cosmos has come in these few years? From when it began to where it is now.  

We incorporated in December 2017 as a four-member team, now we have close to 100 members (YoY – 4, 12, 36, 50, 100) from various backgrounds working together with a dream of making space accessible to everyone. We have raised close to $15 million (roughly Rs. 112 crores)  funding raised over three years of funding every year since 2019 ($0.5 million, $3.5 million, $11 million) and signed a MoU with India Space Research Organisation for utilising their infrastructure and technical expertise. We have also signed agreements with supporting agencies like Leafspace for ground stations. In addition, we have onboarded a few customers across the globe to launch with us. We are still a pre revenue company with customer Letters of Intent steadily increasing over the years. 

9.   How did the ISRO partnership come about? Apart from infrastructure access, how else will it help the business?  

Agnikul is the first company to sign agreements with ISRO including an MoU with ISRO (which happened very recently). This MoU will provide us access to infrastructure for testing multiple subsystems such as engines and avionics packages. Working out of ISRO facilities will give us invaluable guidance besides accelerating our time to get the product flight ready. In addition, we see this partnership as a major step in allowing private players in space sectors to work alongside ISRO. Also, this will help us review our designs with ISRO experts. 

10. Could you speak about the unique 3D-printing tech that you use to build your rockets?  

Most of the parts of our launch vehicle are made through 3D printing. We rely on 3D printing to reduce the fabrication and turnaround time. We have recently realised and qualified our fully 3D printed, single piece and semi cryogenic engine – Agnilet. This will be part of the second stage of our vehicle and it’s one of its kind in the world. We have realised the full-scalemodel and showcased it for the first time in IAC, Dubai.  

11. Is India ready for a space-tech revolution? How long before we have companies that do work at a scale like SpaceX in India? 

With the efforts of our Honourable Prime Minister, Indian Space Research Organisation, space is becoming the next booming thing in India. Environment is very favourable for space startups now and with the number of space companies raising investment, the day is not so far. Very soon India will have its own SpaceX up and running. 

12. Have you thought about ways in which you could reduce the cost of space travel? 

We are a space transportation company – everything that we do has an angle of space travel cost reduction. Starting from highly modular vehicle designs, to efficient energy management systems such as new age batteries, to engines that can be easily manufactured, we believe the cost of space travel can be drastically reduced when one is able to iterate hardware at the speed of software.  

13. What are the other plans for the future?   

Future plans exist from scaling to do at least 20-25 launches a year (a launch on-demand every 2 weeks). We also have plans to make the rocket extremely customisable and tailor it specifically for each satellite’s needs – all satellites are special enough to demand a rocket of their own.  

14. How long before space travel becomes as common as air travel?  

I expect this to be taking 15 years or so in India. Globally, it could happen in seven to eight years. Three things have to happen before we get here – A) Cost of travel has to come down meaningfully, B) Awareness on how reachable space is should go up, C) Rocket Science should not be “rocket science” to get here. Companies such as ourselves are working on all of these areas to make space transportation as common as air transportation. 

15. Do you have any management mantra/ advice that you’d like to share with future entrepreneurs?          

You won’t always have luck but all you have to do is try till that point. I have always had this belief and tell my teammates as well. If you take a graph, and try to plot output vs. hard work, sometimes, for the same amount of hard work you will get more output, you never know when this phase will come. All you have to do is continue with steady, consistent brute force effort and, one day things will suddenly be in your favour. 

16. What is the employee strength? Is Agnikul Cosmos hiring currently?  

We are currently a 100-member team and we are scaling rapidly. We are hiring people for various verticals currently, please do check out our careers page for details and drop your resume at humancapital@agnikul.in too. Anyone who is really really good at anything, has a place at Agnikul! 

Continue Reading

Science

NASA Data Empowers Global Response to Rising Sea Levels

Published

on

By

NASA Data Empowers Global Response to Rising Sea Levels

Coastal communities around the world are confronting the realities of rising sea levels, which threaten both daily life and essential infrastructure. In response, NASA has collaborated with agencies such as the US Department of Defense, the World Bank, and the United Nations to deliver detailed data on global sea level rise. This information, accessible through NASA’s Earth Information Center, is intended to aid in the preparation and planning for coastal impacts expected through the year 2150.

As per a report by NASA, the centre offers projections of future sea levels and potential regional flooding over the next 30 years. The report highlights that this resource combines data from NASA’s ongoing satellite monitoring with computer modelling of ice sheet dynamics and ocean behaviour, alongside assessments from global authorities like the Intergovernmental Panel on Climate Change. These tools are designed to equip communities with accurate data on which they can base crucial coastal infrastructure and climate resilience plans.

Global Applications of NASA’s Data

Global institutions are using NASA’s sea level data to shape policies and implement adaptive strategies in vulnerable regions, the report mentioned. The World Bank, for example, integrates this information into Climate Risk Profiles for countries most susceptible to rising sea levels. Similarly, the U.S. Department of Defense leverages the data to foresee and mitigate the impacts on its coastal facilities, while the U.S. Department of State uses the information in disaster preparedness and adaptation planning for its international allies, the report further adds.

Selwin Hart, Assistant Secretary-General and special adviser to the United Nations on climate action, described the data as “a critical resource for protecting lives and livelihoods,” emphasising the disparity in impacts between a global warming limit of 1.5 degrees Celsius and current policy projections. This data, he noted, underscores the urgent need for action in vulnerable coastal areas.

Accelerating Rise of Global Sea Levels

The current rate of sea level rise has been shown to increase significantly, with nearly all coastal countries observing heightened sea levels from 1970 to 2023. According to Ben Hamlington, head of NASA’s sea level change team, the rise in sea levels is occurring at an accelerated pace, with average increases nearly doubling over the past three decades. Notably, NASA’s projections indicate that Pacific Island nations will see at least a 15-centimetre rise by 2050, accompanied by a marked increase in high-tide flooding.

The new data platform, as explained by Nadya Vinogradova Shiffer, director of NASA’s ocean physics programme, allows communities worldwide to anticipate future flooding scenarios.

Continue Reading

Science

Ancient pebbles in Israel hint at the earliest form of wheel technology

Published

on

By

Ancient pebbles in Israel hint at the earliest form of wheel technology

Archaeologists in Israel have uncovered doughnut-shaped pebbles that may be among the earliest forms of wheel-like technology. Found at the Nahal Ein Gev II site in northern Israel, these 12,000-year-old limestone pebbles feature central holes and are thought to have been used as spindle whorls—a tool for spinning fibres like flax and wool.

Talia Yashuv, a graduate student and co-author of the study at the Hebrew University of Jerusalem’s Institute of Archaeology, told LiveScience that these ancient artefacts suggest early experimentation with rotational tools that could have laid the foundation for later advancements like the potter’s wheel and the cart wheel. This discovery was published in PLOS One on November 13, offering a glimpse into pre-agricultural technology in the region.

The roughly 100 perforated pebbles were analysed by Yashuv and Leore Grosman, a professor of prehistoric archaeology at the same institute. After scanning each pebble in 3D, the team produced detailed models to assess their potential uses. Most of the pebbles were thought unlikely to serve as fishing weights or beads due to their size and shape, which diverge from artefacts used in similar periods. Instead, the team recreated spindle whorls from the scanned models, which traditional craft expert Yonit Crystal used to spin flax and wool. While the flax was easier to handle, the replicas demonstrated that the pebbles were likely effective as spindle whorls, supporting early textile production, the study noted.

Implications of the Findings

The findings indicate that these spindle whorls could mark a key point in technological evolution, potentially linked to new methods of storage and survival. Alex Joffe, a director at the Association for the Study of the Middle East and Africa and experienced archaeologist, told LiveScience that the possibility that these artefacts could have enabled innovations like bags or fishing lines. Yorke Rowan, an archaeology professor at the University of Chicago, echoed this view, noting that the analysis represents a “critical turning point” in early technology.

A Continuing Debate

While these pebbles may represent one of the earliest uses of wheel-like forms, Carole Cheval, an expert in prehistoric textiles at CEPAM in France, told that the publication that she observed that similar objects have been found in other regions, possibly from earlier periods. This adds another layer to understanding the origins of rotational technology, highlighting the ongoing exploration of ancient human innovation.

Continue Reading

Science

Binar satellites re-enter early due to high solar activity

Published

on

By

Binar satellites re-enter early due to high solar activity

An increase in solar activity has resulted in the early re-entry of three CubeSats from Curtin University’s Binar Space Program. These small satellites, which operated at low Earth orbit, were designed to last for at least six months. However, due to intensified solar conditions, they were destroyed within two months, significantly shortening their scientific mission.

CubeSats like Binar-2, 3 and 4 are particularly vulnerable to space weather impacts because they lack propulsion systems that could counteract the heightened atmospheric drag caused by solar activity. The satellite programme had launched Binar-1 in 2021 during relatively low solar activity, which allowed it to complete a full year in orbit.

The Science Behind Solar Activity

As per a report by The Conversation, solar activity, which includes phenomena such as solar flares, sunspots and solar wind, follows an 11-year cycle driven by the Sun’s magnetic field. Known as “solar cycle 25,” this phase has shown unexpected activity levels, currently over 1.5 times higher than projected. This has impacted not only the Binar satellites but also large-scale operations like the Starlink constellation and the International Space Station, both of which require continuous adjustments to counter increased drag.

Impact of Space Weather on Satellites and Earth

Increased solar activity generates higher levels of ionising radiation and charged particles. This can damage sensitive satellite electronics, disrupt radio communications and increase radiation exposure for astronauts. The intensified solar conditions have also expanded the Earth’s atmosphere outward, leading to increased drag for satellites in low Earth orbit. This affects many smaller satellites, which lack the capability to adjust their altitude.

The recent solar activity has also created more visible auroras, with these atmospheric light displays appearing closer to the equator than seen in decades.

Future Considerations for Space Missions

Despite current challenges, solar activity is expected to decline gradually, reaching a minimum by 2030. This pause may offer more favourable conditions for future missions. In response to current conditions, work has commenced on future Binar missions, which may benefit from a more predictable space weather environment.

Continue Reading

Trending