Connect with us

Published

on

Have you ever imagined what the sound of a nebula in deep space is like? Thanks to NASA, we can now hear the sound of the Butterfly Nebula through data sonification as it soars across space at more than 966,000kmph. The data sonification process converts data to sound. The Butterfly Nebula, also known as NGC 6302, lies within our Milky Way galaxy between 2,500 and 3,800 light-years away, in the constellation Scorpius. It has two “wings” of gas heated to more than 36,000 degrees Fahrenheit (19,982 degrees Celsius).

NASA shared the sound via Instagram. In the clip, each wavelength of light is paired with a different family of instruments to create a “symphony of soothing sounds,” the US space agency said. The “wings” of the nebula are identified by strings and synthetic tones, while stars are represented by a digital harp.

The sound may not be what it would be like in space, but it is a product of human imagination to understand deep space through music. The spectacular image NASA shared was taken by its Hubble Space Telescope, which is one of the most powerful telescopes in space. A joint project of NASA and ESA, Hubble has an unobstructed view of the universe and it has captured millions of images which have stunned astronomers as well as the general public.

Many users expressed their excitement as well as amusement on the post.

“I can only imagine,” commented one user. “Wow… That’s really amazing. Is there any paper written on data sonification that we can read through,” wrote another.

On December 31 last year, NASA had announced that the most favourite image on Instagram taken by the Hubble Space Telescope was a photo of the Butterfly Nebula. In one of its Instagram Stories, NASA had asked its followers to vote for the favourite image taken by the Hubble Space Telescope in 2020. The space agency said that the users had made an “excellent choice!”

According to the ESA, the butterfly shape of this nebula stretches for more than two light-years, which in relative terms is about half the distance from the Sun to the nearest star, Proxima Centauri.


Continue Reading

Science

NASA Astronaut Sunita Williams Refutes Health Concerns Amid ISS Mission

Published

on

By

NASA Astronaut Sunita Williams Refutes Health Concerns Amid ISS Mission

NASA astronaut Sunita Williams has recently addressed speculations surrounding her health condition while on the International Space Station (ISS), discarding recent claims made by media outlets regarding her wellbeing. In response to reports that suggested she appeared “gaunt” due to an extended stay on the ISS, Williams clarified her status during a video interview on November 12, explaining that her weight has remained unchanged since her arrival in orbit.

Routine Exercise and Physical Adaptations

Williams, who commands Expedition 72 aboard the ISS, responded to health concerns publicly, indicating that any changes in her physical appearance are the result of rigorous exercise routines rather than health deterioration. Like all astronauts on extended missions, she has been following an intense workout regimen designed to counteract the muscle and bone density loss commonly associated with prolonged microgravity exposure. Williams stated that her routine includes running on a treadmill, riding an exercise bike and lifting weights. It is a form of exercise that has led to increased muscle mass, particularly in her thighs and glutes, while her overall weight remains consistent.

NASA’s Statement on Crew Health

NASA had previously denied the reports, emphasising that Williams and her fellow crew members, including NASA astronaut Butch Wilmore, are in good health. Williams and Wilmore, who arrived at the ISS on June 6 aboard Boeing’s Starliner capsule, were initially scheduled for a ten-day mission under the Crew Flight Test programme. Technical issues with Starliner’s thrusters led NASA to extend their stay on the ISS until early 2025, when they are expected to return with SpaceX’s Crew-9 mission astronauts.

Current ISS Crew Status

The current ISS team, led by Williams, includes three NASA astronauts and three Russian cosmonauts, all working collaboratively despite recent media scrutiny. Williams assured viewers that her health and morale remain robust as the crew carries out essential research and maintenance tasks on the orbiting laboratory showing NASA’s confidence in their well-being during extended missions.

Continue Reading

Science

Math reveals secrets to gaining height on a half-pipe

Published

on

By

Math reveals secrets to gaining height on a half-pipe

A recent study reveals how skateboarders can use mathematical insights to increase their speed and height on half-pipes. Florian Kogelbauer, a mathematician from ETH Zurich, and his research team have examined how specific movements impact a skateboarder’s performance on U-shaped ramps. By alternating between crouching and standing in certain areas, skaters can generate extra momentum, leading to higher jumps and faster speeds. This research, published in Physical Review Research, could lead to more efficient techniques for skaters aiming to improve their skills.

Modelling Momentum on Half-Pipes

The research was published in American Physical Society Journal. The technique of “pumping,” or alternating between crouching and standing, is essential for building speed on half-pipes. Kogelbauer’s team created a model to show how the body’s centre of mass affects movement on a ramp, much like the mechanics of a swing. In their calculations, they found that crouching while moving downhill and standing while moving uphill helps skaters gain height more effectively. This rhythm, the team suggests, could help skaters reach higher elevations on the ramp in fewer motions.

Testing the Theory with Real Skaters

To test the model’s validity, researchers observed two skateboarders as they navigated a half-pipe. They were asked to reach a specific height as quickly as possible. Video analysis revealed that the more experienced skater naturally followed the model’s suggested pattern, reaching the target height with fewer motions. The less experienced skater, who did not follow the pattern as precisely, required more time to reach the same height. This contrast suggests that experienced skaters intuitively apply these principles for better performance.

Broader Applications Beyond Skateboarding

According to Sorina Lupu, an engineer at the California Institute of Technology, this simplified model may also have applications in robotics. By demonstrating how minimal adjustments in body position can impact speed and height, this study offers insights that could make robotic movement more efficient. For engineers, this research indicates that straightforward models of human movement could be used to enhance robotic performance, providing an alternative to complex machine-learning models often used in robotics.

Continue Reading

Science

Global Fossil CO2 Emissions Hit Record in 2024

Published

on

By

Global Fossil CO2 Emissions Hit Record in 2024

Global carbon emissions from fossil fuel combustion have reached an unprecedented peak in 2024, with the Global Carbon Project reporting a projected 37.4 billion tonnes of fossil CO2 emissions, a 0.8% increase from 2023. The report underscores an urgent call for emissions reduction as the world’s annual output of CO2 from fossil fuels and land-use changes collectively approaches 41.6 billion tonnes. Despite increased efforts to mitigate climate impacts, there are no clear signs of a peak in global fossil CO2 emissions, heightening the risk of surpassing critical climate thresholds.

Sector-Specific Emissions and Regional Insights

As per a report by University of Exeter, emissions from fossil fuels, including coal, oil, and gas, are anticipated to rise in 2024, accounting for 41 percent, 32 percent, and 21 percent of fossil CO2 emissions, respectively. Coal emissions are expected to increase by 0.2 percent, oil by 0.9 percent, and natural gas by 2.4 percent. On a regional level, China, responsible for 32 percent of global emissions, is projected to see a slight increase of 0.2 percent, while emissions in the United States are expected to fall by 0.6 percent.

The European Union’s emissions are forecasted to decrease by 3.8 percent, whereas India, contributing 8 percent of global emissions, is projected to experience a 4.6 percent rise. Emissions from aviation and shipping sectors are also set to increase by 7.8 percent this year, though they remain below pre-pandemic levels.

Carbon Budget and Climate Warnings

According to Professor Pierre Friedlingstein from the University of Exeter, who led the study, the absence of a peak in fossil CO2 emissions further reduces the remaining carbon budget needed to keep warming below the Paris Agreement’s 1.5-degree Celsius target. At the current emission rate, a 50 percent probability exists of surpassing this threshold within the next six years. Meanwhile, Professor Corinne Le Quéré of the University of East Anglia acknowledged ongoing efforts in renewable energy deployment and reduced deforestation but stressed that substantial emissions reductions are still essential.

Urgency for Accelerated Action

The report emphasises that while some nations demonstrate progress in emissions reduction, these efforts have not been sufficient to reverse the overall global trend. Dr Glen Peters from the CICERO Center for International Climate Research noted that global climate action remains “a collective challenge,” with gradual declines in emissions in certain regions counterbalanced by increases elsewhere.

Continue Reading

Trending