Connect with us

Published

on

Mars, by virtue of its tenuous atmosphere and proximity to our solar system’s asteroid belt, is far more vulnerable than Earth to being struck by space rocks – one of the many differences between the two planetary neighbours.

Scientists are now gaining a fuller understanding of this Martian trait, with help from NASA’s robotic InSight lander. Researchers on Monday described how InSight detected seismic and acoustic waves from the impact of four meteorites and then calculated the location of the craters they left – the first such measurements anywhere other than Earth.

The researchers used observations from NASA’s Mars Reconnaissance Orbiter in space to confirm the crater locations.

“These seismic measurements give us a completely new tool for investigating Mars, or any other planet we can land a seismometer on,” said planetary geophysicist Bruce Banerdt of NASA’s Jet Propulsion Laboratory, the InSight mission’s principal investigator.

The space rocks InSight tracked – one landing in 2020 and the other three in 2021 – were relatively modest in size, estimated to weigh up to about 440 pounds (200kg), with diameters of up to about 20 inches (50cm) and leaving craters of up to about 24 feet (7.2meters) wide. They landed between 53 miles (85km) and 180 miles (290km) from InSight’s location. One exploded into at least three pieces that each gouged their own craters.

“We can connect a known source type, location and size to what the seismic signal looks like. We can apply this information to better understand InSight’s entire catalog of seismic events, and use the results on other planets and moons, too,” said Brown University planetary scientist Ingrid Daubar, a co-author of the study published in the journal Nature Geoscience.

The researchers believe that now the seismic signature of such impacts has been discovered they expect to find more contained in InSight’s data, going back to 2018.

The three-legged InSight – its name is short for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport – landed in 2018 in a vast and relatively flat plain just north of the Martian equator called Elysium Planitia.

“The moon is also a target for future meteor impact detection,” said planetary scientist and study lead author Raphael Garcia of the University of Toulouse’s ISAE-SUPAERO institute of aeronautics and space.

“And it may be the same sensors will do it, because the spare sensors of InSight are currently integrated in the Farside Seismic Suite instrument for a flight to the moon in 2025,” Garcia added, referring to an instrument due to be placed near the lunar south pole on the side of the moon permanently facing away from Earth.

Mars is about twice as likely as Earth to have its atmosphere hit by a meteoroid – the name for a space rock before it strikes the surface. However, Earth has a much thicker atmosphere that protects the planet.

“So meteoroids usually break up and disintegrate in the Earth’s atmosphere, forming fireballs that only rarely reach the surface to form a crater. In comparison on Mars, hundreds of impact craters are forming somewhere on the planet’s surface every year,” Daubar said.

The Martian atmosphere is only about 1 percent as thick as Earth’s. The asteroid belt, an abundant source of space rocks, is located between Mars and Jupiter.

The scientific goals set for InSight ahead of the mission were to investigate the internal structure and processes of Mars, as well as studying seismic activity and meteorite impacts.

InSight’s seismometer instrument established that Mars is seismically active, detecting more than 1,300 marsquakes. In research published last year, seismic waves detected by InSight helped decipher the internal structure of Mars, including the first estimates of the size of its large liquid metal core, thickness of its crust, and nature of its mantle.

© Thomson Reuters 2022


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

Published

on

By

China Uses Gravitational Slingshots to Rescue Two Satellites Stuck in Orbit for 123 Days

In a major display of technical ingenuity, China has successfully rescued two satellites—DRO-A and DRO-B—that were stuck in the wrong orbit for 123 days following a launch failure. The satellites, part of China’s distant retrograde orbit (DRO) constellation, were saved using a series of complex gravitational slingshot manoeuvres that turned a near-disaster into a milestone in space navigation. This recovery mission not only preserved critical hardware but also highlighted China’s growing expertise in orbital mechanics, space rescue operations, and deep-space navigation technologies.

Innovative Thinking in critical condition

According to a recent story by CGTN, on March 15, 2024, China launched two satellites that were mounted on a Long March-2C rocket with a Yuanzheng-1S upper stage. While the launch initially appeared to be successful, a malfunction in the upper stage made the satellites tumble and head towards Earth much closer than planned. With limited power and damaged systems, conventional recovery was impossible.

Zhang Hao, a researcher at the Technology and Engineering Center for Space Utilisation (CSU), described the moment the team learned of the issue in an interview with CGTN Digital: “If the satellites were destroyed, that would have been a waste of the years of effort that we put in and the money invested in the mission. It would also be a mental blow to the team.”

CSU engineers divided into two teams—one worked to stabilise the spinning satellites, while Zhang’s team focused on calculating a new trajectory using gravitational assists. “We calculated the best route to move the satellites back on track,” Zhang explained during the interview.

A Gravity-Assisted Comeback

The mission exploited the gravitational pulls of Earth, the Moon, and even the Sun to carefully nudge the satellites into their target DRO positions. The technique is commonly applied in deep space missions, and it needs a minimal amount of fuel, which makes it a feasible way to bypass the fuel shortage. The most critical manoeuvre lasted just 20 minutes but took weeks of preparation. “I got more and more stressed as the clock ticked,” Zhang admitted. “I just kept staring at the screen until it said ‘normal, ‘” he further added.

Now successfully positioned, DRO-A and DRO-B have joined the earlier DRO-L to form a three-satellite constellation. According to CSU researcher Mao Xinyuan, the network will drastically reduce spacecraft positioning times—from days to just a few hours—and support autonomous navigation between Earth and the Moon.

This mission not only salvaged valuable satellites but also demonstrated China’s growing capability in autonomous spaceflight and long-distance orbital engineering.

Continue Reading

Science

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

Published

on

By

SpaceX Launches 23 Starlink Satellites on Falcon 9 Rocket From Cape Canaveral

SpaceX has successfully sent another batch of Starlink satellites into space on Monday, marking its second launch of the day. At 10:34 p.m. EDT (0234 GMT on April 29), a brand-new Falcon 9 rocket carried 23 Starlink broadband satellites, including 13 equipped with direct-to-cell capability, from NASA’s Kennedy Space Centre in Florida. Earlier today, a separate Falcon 9 launched 27 Starlink satellites from Vandenberg Space Force Base in California. The rapid double mission highlights SpaceX’s pace in expanding its Internet constellation, which already stands as the largest of its kind ever deployed.

According to a Space.com report, this launch was significant as it was the first flight for this specific Falcon 9 rocket’s first stage. SpaceX’s boosters see multiple missions, with one record-setting booster achieving 27 flights to date. Despite being brand new, the first stage of the Falcon 9 made a flawless landing approximately eight minutes after launch, gently landing on the “A Shortfall of Gravitas” droneship stationed in the Atlantic Ocean.

Meanwhile, the rocket’s upper stage continued its journey, carrying the 23 Starlink satellites toward low Earth orbit (LEO). The satellites were released about 65 minutes after liftoff, joining — or more aptly, surrounding — the ever-growing constellation of Starlink spacecraft. With tonight’s successful deployment, SpaceX is one step closer to achieving its mission of offering global broadband coverage using thousands of satellites working together.

SpaceX’s 50th Falcon 9 mission of 2025, devoted to growing the Starlink network, is a highlight of the company’s relentless launch cadence, with 33 missions dedicated to the project, which now counts more than 7,200 operating satellites.

SpaceX is still growing out its satellite constellation and refining its launch-and-recovery technology. The fact that the company was able to pull off two successful Starlink missions in a single day demonstrates just how well SpaceX has been able to finesse the balance between reusability with new hardware.

Continue Reading

Science

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

Published

on

By

Amazon Launches 27 Satellites to Start Building Project Kuiper Internet Constellation

A United Launch Alliance (ULA) Atlas V rocket has been launched carrying 27 of Amazon’s Project Kuiper broadband spacecraft. The launch took place from Florida’s Cape Canaveral Space Force Station on April 28, 2025, at 7:01 PM EDT (4:31 AM IST). It is reported to be the first of more than 80 launches, which are planned to deploy a megaconstellation for Project Kuiper. The ultimate end goal for Amazon is to provide end-to-end network service, which means routing data both to and from the satellites and from the internet to the satellites and from the satellites to a customer’s terminal antenna. The effort is expected to start covering customers later this year. The remaining 80-plus launches will be performed by Atlas V and its successor, ULA’s new Vulcan Centaur rocket.

According to a Space.com report, the 27 satellites will be initially placed at an altitude of 280 miles (450 kilometres) and will later manoeuvre themselves to their operational height of 392 miles (630 kilometres). Interestingly, reports suggest that Amazon will eventually harbour more than 3,200 satellites. In contrast, SpaceX’s Starlink network already has over 7,200 active broadband satellites. The report further claims that the brand is planning to launch 80 more satellites in the next few months.

Today’s launch used an Atlas V rocket, and the Kuiper fleet rollout will see additional launch missions with more Atlas Vs and Vulcan Centaur rockets.

Amazon has also advanced its satellites with innovative technologies, such as phased array antennas, optical inter-satellite links, updatable software, solar arrays, and efficient propulsion, to create a high-performance service architecture, accessible from any point on Earth.

Amazon’s Kuiper launch seems near following satellite deployment and testing, with an approach to compete with the operational architecture of Starlink by establishing a datalink from the internet down to Earth stations.

Continue Reading

Trending