Connect with us

Published

on

If an earthquake strikes in the not too distant future and survivors are trapped under tonnes of rubble, the first responders to locate them could be swarms of cyborg cockroaches.

That’s a potential application of a recent breakthrough by Japanese researchers who demonstrated the ability to mount “backpacks” of solar cells and electronics on the bugs and control their motion by remote control.

Kenjiro Fukuda and his team at the Thin-Film Device Laboratory at Japanese research giant Riken developed a flexible solar cell film that’s 4 microns thick, about 1/25 the width of a human hair, and can fit on the insect’s abdomen.

The film allows the roach to move freely while the solar cell generates enough power to process and send directional signals into sensory organs on the bug’s hindquarters.

The work builds upon previous insect-control experiments at Nanyang Technological University in Singapore and could one day result in cyborg insects that can enter hazardous areas much more efficiently than robots.

“The batteries inside small robots run out quickly, so the time for exploration becomes shorter,” Fukuda said. “A key benefit (of a cyborg insect) is that when it comes to an insect’s movements, the insect is causing itself to move, so the electricity required is nowhere near as much.”

Fukuda and his team chose Madagascar hissing cockroaches for the experiments because they are big enough to carry the equipment and have no wings that would get in the way. Even when the backpack and film are glued to their backs, the bugs can traverse small obstacles or right themselves when flipped over.

The research still has a long way to go. In a recent demonstration, Riken researcher Yujiro Kakei used a specialized computer and wireless Bluetooth signal to tell the cyborg roach to turn left, causing it to scramble in that general direction. But when given the “right” signal, the bug turned in circles.

The next challenge is miniaturising the components so that the insects can move more easily and to allow for mounting of sensors and even cameras. Kakei said he constructed the cyborg backpack with JPY 5,000 (roughly Rs. 2,700) worth of parts purchased at Tokyo’s famed Akihabara electronics district.

The backpack and film can be removed, allowing the roaches to go back to life in the lab’s terrarium. The insects mature in four months and have been known to live up to five years in captivity.

Beyond disaster rescue bugs, Fukuda sees broad applications for the solar cell film, composed of microscopic layers of plastic, silver, and gold. The film could be built into clothing or skin patches for use in monitoring vital signs.

On a sunny day, a parasol covered with the material could generate enough electricity to charge a mobile phone, he said.

© Thomson Reuters 2022


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Published

on

By

Earth to Spin Faster on July 22 to Place It Among Shortest Days in History

Scientists say Earth will spin slightly faster on Tuesday, July 22, 2025, making that day roughly 1.34 milliseconds shorter than the usual 24-hour period. This subtle acceleration, detected by atomic clocks and satellites, will make July 22 the second-shortest day in recorded history. (Only July 10, 2025 — 1.36 ms short — was shorter this year.) Experts note that since 2020, Earth has repeatedly set new short-day records, a trend now under close watch by global timekeeping authorities. While imperceptible in daily life, the phenomenon may ultimately require an unprecedented “negative” leap second to keep atomic time aligned with Earth’s spin.

Earth’s Unusual Acceleration

According to previous studies, Earth’s rotation is not perfectly constant. The July 22 rotation was measured at 1.34 milliseconds less than a normal day. Reports say that 2025 is witnessing some of the fastest spins on record – the quickest since continuous measurements began in 1973.

In fact, new data showed that earlier in 2025 the shortest day occurred on July 10 (about 1.36 ms shorter than 24 hours), with July 22 a “close runner-up” at 1.34 ms below normal. If current models hold, another brief day is expected on August 5 (roughly 1.25 ms short), leaving July 22 as the second-shortest of the year. Altogether, researchers describe this as a “puzzling trend” of Earth’s rotation speeding up in recent years.

Speed-Up reasons

Scientists attribute these fluctuations to a mix of celestial and geophysical factors. The Moon’s orbit is a prime factor: in early July it reached maximum declination, pulling off-center and briefly accelerating Earth’s spin. The same lunar alignment on July 22 is expected to repeat the effect. Normally, lunar tides act as a brake, gradually lengthening days, but on these shorter timescales the Moon’s position can instead speed up the rotation.

Other subtle influences also play a role. Climate-driven mass shifts – such as melting ice sheets and moving ocean water – change Earth’s moment of inertia and can tweak day length. Even large earthquakes or seasonal atmospheric changes can nudge Earth’s rotation by tiny microseconds.

Continue Reading

Science

Algae-Grown Bioplastic Passes Mars Pressure Test, Boosting Hopes for Red Planet Habitats

Published

on

By

Algae-Grown Bioplastic Passes Mars Pressure Test, Boosting Hopes for Red Planet Habitats

In a major step forward for sustainable space travel, researchers have been able to successfully grow algae inside biodegradable bioplastic, which mimics the conditions of the extreme Martian environment. The experiment was intended to see how well materials made of polylactic acid could keep conditions habitable on Mars, where the surface pressure is less than 1 percent that of the Earth’s. It’s an important step toward the development of self-sustaining habitats for the human portion of the expeditionary force that require regenerative biological systems instead of expensive resupply missions from Earth.

Algae Thrive in Bioplastic Chambers Under Mars-Like Conditions, Paving Way for Space Habitats

As per a study published in Science Advances, a research team led by Robin Wordsworth of Harvard University demonstrated that the green algae Dunaliella tertiolecta could not only survive but perform photosynthesis inside 3D-printed chambers engineered to replicate Mars’s thin, carbon dioxide–rich atmosphere. The bioplastic chamber also protected the algae from ultraviolet radiation while allowing enough light for biological activity. Liquid water was stabilised using a pressure gradient within the chamber.

The researchers highlighted that bioplastics offer distinct advantages over traditional industrial

materials, which are difficult to recycle or transport in space. Since polylactic acid is derived from natural sources, it could potentially be manufactured or regenerated on-site using algae—establishing a self-sustaining loop. “If you have a habitat that is composed of bioplastic and it grows algae within it, that algae could produce more bioplastic,” Wordsworth noted in a statement.

This latest experiment builds on the team’s earlier work involving silica aerogels that replicated Earth’s greenhouse conditions. By combining algae-based bioplastic systems for material regeneration with aerogels for thermal and atmospheric control, the team sees a viable path forward to long-term extraterrestrial habitation. The chambers’ success under Mars-like conditions reinforces the possibility of using biologically sourced materials to support life beyond Earth.

In future experiments, those systems are to be tested in harsher vacuum conditions, eventually for the benefit of human spaceflight and with spinoff applications on Earth, said Wordsworth, who contends such technology can have spinoff benefits.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy Z Fold 8 Might Not Feature Upgraded Titanium Backplate Included With Galaxy Z Fold 7: Report



NASA’s Twin TRACERS Satellites Will Monitor Space Weather to Shield Earth from Solar Storms

Continue Reading

Science

NASA Tests Modular Satellite Tech to Cut Launch Costs and Speed Missions

Published

on

By

NASA Tests Modular Satellite Tech to Cut Launch Costs and Speed Missions

NASA is testing new scalable satellite technology to integrate and launch scientific sensors faster and at lower cost. NASA’s Athena EPIC (Economical Payload Integration Cost) mission uses a compact, modular spacecraft platform that “shares resources among the payloads onboard” so each instrument doesn’t need its own control system. By offloading routine functions to the bus, this architecture promises “lower costs to taxpayers and a quicker path to launch”. Langley leads the project, which will fly as a SpaceX rideshare in mid-2025 to test the concept in orbit. It could expedite deployment of climate and weather sensors and accelerate future missions.

Scalable Satellite Platforms and Demonstration Missions

According to official site, NASA and industry partners are developing modular small satellite platforms. The Athena EPIC spacecraft is built from eight interlocking Hyper-Integrated Satlet (HISat) modules that form a “SensorCraft” bus, simplifying integration of multiple instruments. In parallel, NASA’s Pathfinder Technology Demonstrator (PTD) series uses a standard six-unit (6U) CubeSat bus (by Terran Orbital) that can be reconfigured quickly. The PTD-3 mission, launched in 2022, carried MIT Lincoln Laboratory’s TBIRD optical-communications payload and achieved a record 200 gigabits-per-second laser downlink from orbit.

Commercial partners are involved as well: Blue Canyon Technologies built the two CubeSats for NASA’s CubeSat Laser Infrared Crosslink (CLICK) mission, and will supply four for the forthcoming Starling formation-flying demo. These standardized buses and partnerships speed integration and testing of new satellite systems.

Faster Deployments, Lower Costs, and Scientific Gains

These scalable satellite buses promise to cut mission costs and cycle times. Instead of the billion-dollar platforms of old, the new “SensorCraft” design can slash costs to the single-digit millions per mission. Smaller satellites are cheaper to build and easier to replace if failures occur. Moreover, by reusing existing parts, teams can accelerate development – for example, Athena’s optical sensor was assembled from spare components of NASA’s CERES climate-observation satellites. NASA officials note that, “as satellites become smaller, a less traditional, more efficient path to launch is needed” to maximize science return.

Continue Reading

Trending