Connect with us

Published

on

NASA’s Double Asteroid Redirection Test (DART) spacecraft is designed to be a one hit wonder. It will end its days by crashing into an asteroid at 24,000 kilometres per hour on September 26. Launched from Earth in November 2021, DART is about the size of a bus and was created to test and prove our ability to defend Earth from a dangerous asteroid.

Landing a direct hit on a target from 11 million kilometres away isn’t easy. But while this sounds far, the asteroid was actually selected by NASA because it is relatively close to Earth. This will give engineers the opportunity to test the spacecraft’s ability to operate itself in the final stages before the impact, as it crashes autonomously.

The target asteroid is called Dimorphos, a body 163 metres in diameter that’s orbiting a 780 metre-wide asteroid called Didymos. This “binary asteroid system” was chosen because Dimorphos is in orbit around Didymos, which makes it easier to measure the result of the impact due to the resulting change in its orbit. However, the Dimorphos system does not currently pose any risk to the Earth.

Regardless, NASA is attempting nothing less than a full scale planetary defence experiment to change an asteroid’s path. The technique being used is called “kinetic impact”, which alters the orbit of the asteroid by crashing into it. That’s essentially what is known as a safety shot in snooker, but played on a planetary level between the spacecraft (as the cue ball) and the asteroid.

A tiny deflection could be sufficient to prove that this technique can actually change the path of an asteroid on a collision path with the Earth.

But the DART spacecraft is going to be completely blown apart by the collision because it will have an impact equivalent to about three tonnes of TNT. In comparison, the atomic bomb dropped on Hiroshima was equal to 15,000 tonnes of TNT.

So, with this level destruction and the distance involved, how will we be able to see the crash? Luckily, the DART spacecraft is not travelling alone on its quest, it is carrying LICIACube, a shoebox-size mini spacecraft, known as a cubesat, developed by the Italian Space Agency and aerospace engineering company Argotec. This little companion has recently separated from the DART spacecraft and is now travelling on its own to witness the impact at a safe distance of 55km.

Never before has a cubesat operated around asteroids so this provides new potential ways of exploring space in the future. The impact will also be observed from Earth using telescopes. Combined, these methods will enable scientists to confirm whether the operation has been successful.

It might, however, take weeks for LICIACube to send all images back to Earth. This period will be utterly nerve wracking – waiting for good news from a spacecraft is always an emotional time for an engineer.

What happens next? An investigation team will look at the aftermath of the crash. These scientists will aim to measure the changes in Dimorphos’ motion around Didymos by observing its orbital period. This is the time during which Dimorphos passes in front and behind Didymos, which will happen every 12 hours.

Ground telescopes will aim to capture images of the Dimorphos’ eclipse as this happens. To cause a significant enough deflection, DART must create at least a 73-second orbital period change after impact – visible as changes in the frequencies of the eclipses.

These measurements will ultimately determine how effective “kinetic impact” technology is in deflecting a potentially hazardous asteroid – we simply don’t know yet.

This is because we actually know very little of the asteroids’ composition. The great uncertainty around how strong Dimorphosis is has made designing a bullet spacecraft a truly enormous engineering challenge. Based on ground observation, the Didymos system is suspected to be a rubble-pile made up of lots of different rocks, but its internal structure is unknown.

There are also great uncertainties about the outcome of the impact. Material ejected afterwards will contribute to the effects of the crash, providing an additional force. We don’t know whether a crater will be formed by the impact or if the asteroid itself will suffer major deformation, meaning we can’t be sure how much force the collision will unleash.

Future missions Our exploration of the asteroid system does not end with DART. The European Space Agency is set to launch the Hera mission in 2024, arriving at Didymos in early 2027 to take a close look at the remaining impact effects.

By observing the deformations caused by the DART impact on Dimorphos, the Hera spacecraft will gain a better understanding of its composition and formation. Knowledge of the internal properties of objects such as Didymos and Dimorphos will also help us better understand the danger they might pose to Earth in the event of an impact.

Ultimately, the lessons from this mission will help verify the mechanics of a high-velocity impact. While laboratory experiments and computer models can already help validate scientists’ impact predictions, full-scale experiments in space such as DART are the closest we will get to the whole picture. Finding out as much as we can about asteroids will help us understand what force we need to hit them with to deflect them.

The DART mission has led to worldwide cooperation among scientists hoping to address the global issue of planetary defence and, together with my colleagues on the DART investigation team, we aim to analyse the impact effects. My own focus will be on studying the motion of the material that is ejected from the impact.

The spacecraft impact is scheduled for September 26 at 19:14 Eastern Daylight Time (00:14 British Summer Time on September 27). You can follow the impact on NASA TV.


Continue Reading

Science

Meteorite From Outer Solar System Challenges Planet Formation Timeline in Early Solar System

Published

on

By

Meteorite From Outer Solar System Challenges Planet Formation Timeline in Early Solar System

A minuscule meteorite seems to be rewriting the history of our solar system. The 50-gram Northwest Africa 12264 has brought a new understanding of when and how rocky worlds came together. Inner planets such as Earth and Mars were thought to have formed earlier than their more distant siblings, given temperatures and composition. But a new study of this meteorite, which originates from beyond the asteroid belt, suggests that the birth of planets throughout the solar system occurred tens of millions of years earlier than previously believed, narrowing the gap in time between the solar system’s inner and outer surfaces.

Outer Solar System Meteorite Reveals Rocky Planets Likely Formed Simultaneously Across the Galaxy

As per a study led by Dr Ben Rider-Stokes of The Open University and published in Communications Earth & Environment, the meteorite’s chemical makeup offers critical evidence. Its chromium and oxygen isotope ratios place its origin in the outer solar system. Most strikingly, lead isotope dating determined its age to be about 4.564 billion years, almost identical to basalt samples from the inner solar system that represent early planetary crusts.

These findings directly challenge the previous assumption that rocky planets beyond Jupiter formed two to three million years later due to their water-rich composition. Ice and water were thought to slow differentiation, the internal layering of planetary bodies. But this meteorite, with its outer solar birth and inner solar age, points to a far more synchronised process of rocky planet formation.

Scientists note that the discovery is also consistent with observations of exoplanetary systems. Based on this and past observations of disks of dust and gas around other stars, the evidence of planetesimals forming quickly and over large orbital separations adds to the argument that early solar system evolution may have been more universal than thought.

As trivial as the time difference might be in the context of a universe, the question is huge. A new timeline of planet formation is not only a retelling of Earth’s history but may also help determine how astronomers think about how planets form in the galaxy more generally, providing new hints about where and how in the galaxy Earth-like planets could take shape.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


NASA’s Hubble and Webb Discover Bursting Star Formation in Small Magellanic Cloud



Nothing Phone 3 Review: Enters the Big League With a Big Price

Related Stories

Continue Reading

Science

NASA’s Hubble and Webb Discover Bursting Star Formation in Small Magellanic Cloud

Published

on

By

NASA’s Hubble and Webb Discover Bursting Star Formation in Small Magellanic Cloud

Scientists from NASA observed the bursting expansion of gas, stars, and dust from the glittering territory of the dual star clusters using Hubble and Webb space telescopes. NGC 460 and NGC 456 stay in the Small Magellanic Cloud, which are open clusters, with dwarf galaxies and orbit the Milky Way. These clusters are part of the extensive star complex clusters and nebulae that are most likely to be linked to each other. Stars are born upon the collapse of clouds.

Hubble and Webb Reveal Explosive Star Births in Small Magellanic Cloud

As per a report from NASA, the open clusters are from anywhere from a few dozen to many young stars, which are loosely bound by gravity. The images captured by Hubble capture the glowing and ionised gas, which comes from stellar radiation and blows bubbles in the form of gas and dust, which is blue in colour. The infrared of Webb shows the clumps and delicate filament-like structures and dust, which is red in colour.

NGC 460 and NGC 456: A Window into Early Universe Star Formation

Hubble shows the images of dust in the form of a silhouette against the blocking light; however, in the images of Webb, the dust is warmed by starlight and glows with infrared waves. The blend of gas and dust between the stars of the universe is called the interstellar medium. The region holding these clusters is known as the N83-84-85 complex and is home to multiple, rare O-type stars. These are hot and extremely massive stars that burn hydrogen like the Sun.

Such a state mimics the condition in the early universe; therefore, the Small Magellanic Cloud gives a nearby lab to find out the theories regarding star formation and the interstellar medium of the cosmos’s early stage.

With these observations, the researchers tend to study the gas flow from convergence to divergence, which helps in refining the difference between the Small Magellanic Cloud and its dwarf galaxy, and the Large Magellanic Cloud. Further, it helps in knowing the interstellar medium and gravitational interactions between the galaxies.

Continue Reading

Science

New Interstellar Object 3I/ATLAS Could Reveal Secrets of Distant Worlds

Published

on

By

New Interstellar Object 3I/ATLAS Could Reveal Secrets of Distant Worlds

The entry of a third known object into our solar system has been confirmed on July 1, 2025 by the astronomers. This object is named 3I/ATLAS, where 3I stands for “Third Interstellar”, having a highly hyperbolic (eccentricity ≈ 6.2) orbit, confirming it is not bound to the Sun but is a true interstellar visitor. Only two such visitors, 1I/ʻOumuamua (2017) and 2I/Borisov (2019), had been seen before. Notably, 3I/ATLAS appears to be the largest and brightest interstellar wanderer yet discovered.

Comparison with previous interstellars

According to NASA, astronomers from the ATLAS survey first spotted the object on July 1, 2025, using a telescope in Chile. It immediately drew attention for its unusual motion. Shortly after discovery, observers saw a faint coma and tail, leading to its classification as comet C/2025 N1 (ATLAS).

This comet-like appearance is shared with 2I/Borisov, the second interstellar visitor. Global observatories now track 3I/ATLAS. It poses no threat but offers a rare opportunity to study alien material. Since 1I/ʻOumuamua was observed only as it was leaving the solar system, it was difficult for astronomers to get enough data on it to confirm its exact nature — hence the crazy theories about it being an alien spaceship — though it’s almost certainly an asteroid or a comet.

Size and Significance

3I/ATLAS is much larger and brighter than earlier interstellar visitors. It is about 15 kilometers (km) [9 miles] in diameter, with huge uncertainty, compared to 100m for 1I/’Oumuamua and less than 1km for 2I/Borisov. This brightness and size makes it a a better target for study. Astronomers are planning to analyze its light for chemical signatures from its home system to get clues about the formation of distant planetary systems.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


WhatsApp Rolls Out AI-Powered Chat Wallpaper Feature; Threaded Message Replies Spotted in Development



Apple Maps in iOS 26 Beta Version Come With An Upgraded Search Feature: Report

Continue Reading

Trending