Connect with us

Published

on

Ten months after launch, NASA’s asteroid-deflecting DART spacecraft neared a planned impact with its target on Monday in a test of the world’s first planetary defense system, designed to prevent a doomsday collision with Earth.

The cube-shaped “impactor” vehicle, roughly the size of a vending machine with two rectangular solar arrays, was on course to fly into the asteroid Dimorphos, about as large as a football stadium, and self-destruct around 7pm EDT (4:30 IST) some 6.8 million miles (11 million km) from Earth.

The mission’s finale will test the ability of a spacecraft to alter an asteroid’s trajectory with sheer kinetic force, plowing into the object at high speed to nudge it astray just enough to keep our planet out of harm’s way.

It marks the world’s first attempt to change the motion of an asteroid, or any celestial body.

DART, launched by a SpaceX rocket in November 2021, has made most of its voyage under the guidance of NASA’s flight directors, with control to be handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s planned impact is to be monitored in real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

DART’s celestial target is an asteroid “moonlet” about 560 feet (170 metres) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test cannot create a new existential hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and pose a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts.

Also, their relative proximity to Earth and dual-asteroid configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic mission suicide

The mission represents a rare instance in which a NASA spacecraft must ultimately crash to succeed.

The plan is for DART to fly directly into Dimorphos at 15,000 miles per hour (24,000 kph), bumping it hard enough to shift its orbital track closer to its larger companion asteroid.

Cameras on the impactor and on a briefcase-sized mini-spacecraft released from DART days in advance are designed to record the collision and send images back to Earth.

DART’s own camera is expected to return pictures at the rate of one image per second during its final approach, with those images streaming live on NASA TV starting an hour before impact, according to APL.

The DART team said it expects to shorten the orbital track of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered. A small nudge to an asteroid millions of miles away could be sufficient to safely reroute it away from the planet.

The test’s outcome will not be known until a new round of ground-based telescope observations of the two asteroids in October. Earlier calculations of the starting location and orbital period of Dimorphos were confirmed during a six-day observation period in July.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

NASA has put the entire cost of the DART project at $330 million (roughly Rs. 2,700 crore), well below that of many of the space agency’s most ambitious science missions.

© Thomson Reuters 2022


Continue Reading

Science

Russian Kosmos Satellites Release Mysterious Object in Orbit

Published

on

By

Russian Kosmos Satellites Release Mysterious Object in Orbit

A group of Russian satellites launched earlier this year has caught the attention of space watchers around the world. The satellites – Kosmos 2581, 2582, and 2583 – were sent into orbit in early February from the Plesetsk Cosmodrome. They’ve been placed in a near-polar orbit, about 585 kilometres above Earth. So far, Russian officials haven’t confirmed what these satellites are actually meant to do. But what’s really stirred interest is the release of an unknown object from one of them. This new development, spotted in mid-March, has prompted fresh scrutiny from space monitoring teams across the globe.

What We Know So Far

According to tracking data from the United States Space Force and other monitoring groups, the mysterious object appeared on March 18. It was quickly catalogued and, at first, linked to Kosmos 2581. Later on, though, some signals hinted it might be tied to Kosmos 2583 instead. What’s clear is that the object was released while the satellites were still active – and so far, Russia hasn’t said a word about it.

Interestingly, before the object showed up, the satellites were seen carrying out what’s known as “proximity operations” – basically manoeuvring close to other objects in orbit, which is not something routine satellites typically do.

Expert Insight and Possible Explanations

Astrophysicist Jonathan McDowell from the Harvard-Smithsonian Center for Astrophysics spoke to Space.com about the situation. He pointed out that the satellites had been making deliberate close-range movements, which has led many to believe this isn’t just routine activity.

As for the object itself, there are a few possibilities. It could be part of a satellite testing programme or a tool for formation flying. There’s also a chance it’s linked to some kind of military experiment. While a technical malfunction hasn’t been ruled out, experts note that accidents like that usually leave behind several bits of debris – and that doesn’t seem to be the case here.

Putting It Into Context

The “Kosmos” label has been used by Russia for decades, dating back to 1962. It covers a broad range of secretive military and scientific missions. Triplets like this group aren’t unusual either – China and the US have also used similar formations, often for surveillance or intelligence-gathering purposes.
Still, the exact purpose of Kosmos 2581, 2582, 2583 – and now this newly released object – remains a mystery. Until more information is released (if it ever is), analysts will continue to watch closely from the ground.

Continue Reading

Science

NASA’s Parker Solar Probe Completes Second Close Flyby of the Sun

Published

on

By

NASA’s Parker Solar Probe Completes Second Close Flyby of the Sun

NASA’s Parker Solar Probe has made its second close flyby of the sun. The spacecraft travelled at a speed of 692000 kilometres per hour. It moved within 6.1 million kilometres of the sun. This event took place on March 22. A signal confirming its good health was received on March 25. The signal confirmed that all systems on board were working as planned. The probe was designed to study solar winds and collect data from the sun’s outer atmosphere. The mission is being used to help scientists understand solar activity that affects Earth.

More About The Mission

According to NASA’s announcement, the probe’s instruments were activated during the pass. They were used to study the corona. This is the outer layer of the sun’s atmosphere. The spacecraft was operated on its own during the flyby. It had been programmed in advance. Scientists believe this data may help them understand why the corona is hotter than the sun’s surface. The data is also being used to study changes in space weather. This information is considered important for protecting satellites and communication systems on Earth.

Quote from NASA

In a press release issued by NASA, acting Administrator Janet Petro said that the mission has entered a zone no spacecraft has visited before. Petro said this while addressing the media at the agency’s Washington headquarters. She said that the research is expected to change how solar science is studied in the future.

Award given to the team

As per a statement released by the National Aeronautic Association, the mission team was given the 2024 Robert J. Collier Trophy. The team includes experts from NASA and Johns Hopkins Applied Physics Laboratory. Ralph Semmel, Director at Johns Hopkins APL, said that the mission was once believed to be impossible. He shared this in an interview with NASA’s press team. The next close flyby is expected to take place on June 19.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


CMF Phone 2 Rear Panel With Textured Design Teased by Nothing Ahead of Debut



ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

Related Stories

Continue Reading

Science

ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

Published

on

By

ISRO’s Shubhanshu Shukla Set to Make History with Space Station Mission in May

The mission of Indian astronaut Group Captain Shubhanshu Shukla to the International Space Station (ISS) will take place in May 2025. This mission will be the greatest research and science-related activity carried out on an Axiom Space voyage onboard the International Space Station to date, emphasizing the mission’s global relevance and collaborative character in advancing microgravity research in low-Earth orbit (LEO). NASA confirmed from its Kennedy Space Center in Florida, United States, that the mission will launch no earlier than May 2025.

Mission Overview and Crew

Shubhanshu Shukla will join an international crew on a commercial spacecraft; he is a skilled aerospace engineer and one of ISRO’s top astronaut prospects. This mission is viewed as a watershed moment in India’s larger journey toward advanced space exploration and human spaceflight.

ISRO’s research studies will focus on investigating the physical and cognitive impact of computer screens in microgravity and studying the growth, metabolism, and genetics of three microalgae strains in microgravity.

Scientific Objectives and Experiments

The ISRO-led study, in collaboration with NASA and ESSA, aims to increase microgravity research aboard the ISS to better our understanding of biological processes in microgravity and develop strategies for long-term space missions.

India’s Expanding Role in Space

Indian astronaut Group Captain Shubhanshu Shukla will be the first Indian astronaut to visit the International Space Station and the first Indian to travel to space in the past 40 years.The commercial mission will be directed by experienced NASA astronaut Peggy Whitson, with Tibor Kapu from Hungary and European Space Agency project astronaut Sławosz Uznański-Wiśniewski from Poland.

Mission Duration and Recovery

Following the launch from Kennedy Space Center, the mission crew will spend 14 days on board the International Space Station, completing several experiments.

According to Axiom Space, the Ax-4 research complement includes over 60 scientific programs and activities from 31 nations, including the United States, India, Poland, Hungary, Saudi Arabia, Brazil, Nigeria, the UAE, and countries throughout Europe.

After achieving their objectives, the spacecraft will return to Earth, with a splashdown scheduled in the Pacific Ocean. NASA and its allies will oversee recovery efforts to ensure the safe return of all crew members.

Continue Reading

Trending