Connect with us

Published

on

Ten months after launch, NASA’s asteroid-deflecting DART spacecraft neared a planned impact with its target on Monday in a test of the world’s first planetary defense system, designed to prevent a doomsday collision with Earth.

The cube-shaped “impactor” vehicle, roughly the size of a vending machine with two rectangular solar arrays, was on course to fly into the asteroid Dimorphos, about as large as a football stadium, and self-destruct around 7pm EDT (4:30 IST) some 6.8 million miles (11 million km) from Earth.

The mission’s finale will test the ability of a spacecraft to alter an asteroid’s trajectory with sheer kinetic force, plowing into the object at high speed to nudge it astray just enough to keep our planet out of harm’s way.

It marks the world’s first attempt to change the motion of an asteroid, or any celestial body.

DART, launched by a SpaceX rocket in November 2021, has made most of its voyage under the guidance of NASA’s flight directors, with control to be handed over to an autonomous on-board navigation system in the final hours of the journey.

Monday evening’s planned impact is to be monitored in real time from the mission operations center at the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, Maryland.

DART’s celestial target is an asteroid “moonlet” about 560 feet (170 metres) in diameter that orbits a parent asteroid five times larger called Didymos as part of a binary pair with the same name, the Greek word for twin.

Neither object presents any actual threat to Earth, and NASA scientists said their DART test cannot create a new existential hazard by mistake.

Dimorphos and Didymos are both tiny compared with the cataclysmic Chicxulub asteroid that struck Earth some 66 million years ago, wiping out about three-quarters of the world’s plant and animal species including the dinosaurs.

Smaller asteroids are far more common and pose a greater theoretical concern in the near term, making the Didymos pair suitable test subjects for their size, according to NASA scientists and planetary defense experts.

Also, their relative proximity to Earth and dual-asteroid configuration make them ideal for the first proof-of-concept mission of DART, short for Double Asteroid Redirection Test.

Robotic mission suicide

The mission represents a rare instance in which a NASA spacecraft must ultimately crash to succeed.

The plan is for DART to fly directly into Dimorphos at 15,000 miles per hour (24,000 kph), bumping it hard enough to shift its orbital track closer to its larger companion asteroid.

Cameras on the impactor and on a briefcase-sized mini-spacecraft released from DART days in advance are designed to record the collision and send images back to Earth.

DART’s own camera is expected to return pictures at the rate of one image per second during its final approach, with those images streaming live on NASA TV starting an hour before impact, according to APL.

The DART team said it expects to shorten the orbital track of Dimorphos by 10 minutes but would consider at least 73 seconds a success, proving the exercise as a viable technique to deflect an asteroid on a collision course with Earth – if one were ever discovered. A small nudge to an asteroid millions of miles away could be sufficient to safely reroute it away from the planet.

The test’s outcome will not be known until a new round of ground-based telescope observations of the two asteroids in October. Earlier calculations of the starting location and orbital period of Dimorphos were confirmed during a six-day observation period in July.

DART is the latest of several NASA missions in recent years to explore and interact with asteroids, primordial rocky remnants from the solar system’s formation more than 4.5 billion years ago.

Last year, NASA launched a probe on a voyage to the Trojan asteroid clusters orbiting near Jupiter, while the grab-and-go spacecraft OSIRIS-REx is on its way back to Earth with a sample collected in October 2020 from the asteroid Bennu.

The Dimorphos moonlet is one of the smallest astronomical objects to receive a permanent name and is one of 27,500 known near-Earth asteroids of all sizes tracked by NASA. Although none are known to pose a foreseeable hazard to humankind, NASA estimates that many more asteroids remain undetected in the near-Earth vicinity.

NASA has put the entire cost of the DART project at $330 million (roughly Rs. 2,700 crore), well below that of many of the space agency’s most ambitious science missions.

© Thomson Reuters 2022


Continue Reading

Science

2,300-Year-Old Dwarf Statuette from Alexandria Reveals Ptolemaic Art Insights

Published

on

By

2,300-Year-Old Dwarf Statuette from Alexandria Reveals Ptolemaic Art Insights

A 2,300-year-old marble statuette discovered in Alexandria, Egypt, has offered new insights into how dwarves were perceived during the Ptolemaic period (332–150 B.C.). Depicting a muscular, nude dwarf in motion, the 4-inch sculpture reflects a combination of Egyptian and Greek artistic traditions. Despite missing its arms, legs, and part of the head, the craftsmanship of the piece indicates a highly skilled rendering of human anatomy. It is currently housed at the Metropolitan Museum of Art in New York City.

Depictions of Dwarves in Ptolemaic Art

According to information from the Metropolitan Museum of Art, as reported by Live Science, the statuette incorporates elements from Greek art, such as classical nudity and Hellenistic realism, blended with Egyptian cultural aesthetics. This synthesis points to the cultural exchange that characterised the Ptolemaic dynasty, a period when Egypt was ruled by Ptolemy I Soter, a general of Alexander the Great. The depiction of a dwarf engaged in dance suggests a significant societal role, unlike the exaggerated caricatures of dwarves often seen in Greek art.

Egyptian Perspectives on Dwarves

Historical records indicate that dwarves were highly regarded in ancient Egypt, often serving in the households of nobles and pharaohs. Their association with the god Bes, who was depicted as a short and muscular protector of families and women in childbirth, contributed to their societal acceptance. Bes, known as a dancer and tambourine player, symbolises strength and guardianship in Egyptian mythology. The statuette’s design, which likely depicted the dwarf with a percussion instrument, aligns with this cultural significance.

A Glimpse into Cultural Integration

The artifact demonstrates the integration of different human forms into Egyptian society during the Ptolemaic era. The Met has emphasised that such depictions reflect a broader tradition of valuing diverse body types, setting the Egyptian approach apart from other ancient civilisations. This statuette, though small in size, offers a profound understanding of cultural dynamics during a transformative period in history.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

Lunar Temperature Fluctuations: Understanding the Moon’s Extreme Conditions

Published

on

By

Lunar Temperature Fluctuations: Understanding the Moon's Extreme Conditions

The surface temperature of the moon experiences extreme variations, making it one of the harshest environments in the solar system. During lunar daylight, temperatures can soar to over 100 degrees Celsius, while in darkness, they can plummet to minus 100 degrees Celsius. These fluctuations are caused by the absence of an atmosphere, which on Earth moderates temperature extremes. Instead, the moon’s surface directly absorbs and radiates heat depending on exposure to sunlight.

Lunar Temperature Variations Explained

According to data provided by NASA and analysed by experts, such as John Monnier, a professor of astronomy at the University of Michigan, the moon’s soil, or regolith, significantly influences these temperature shifts. Regolith is a poor conductor of heat, causing rapid temperature changes on the surface while insulating the subsurface. As reported by Live Science, during Apollo missions, measurements indicated that temperatures beneath the surface were warmer by 40 to 45 kelvins compared to the lunar exterior.

Further research using NASA’s Lunar Reconnaissance Orbiter (LRO), launched in 2009, revealed localised thermal anomalies. Findings in 2022 demonstrated that shaded areas within certain lunar pits maintained a consistent temperature of 17 degrees Celsius. These regions are considered promising for future human habitation.

The Moon’s Poles and Extreme Conditions

The lunar poles present unique thermal environments due to the sun’s low angle. Permanently shadowed craters, particularly at the south pole, may host temperatures as low as minus 248.15 degrees Celsius. These craters are shielded not only from direct sunlight but also from secondary heat sources, such as reflected solar radiation. Such locations could hold trapped ice particles, potentially vital for sustaining future lunar exploration missions.

Understanding the moon’s thermal dynamics is essential for designing equipment capable of withstanding its conditions and planning potential settlements. Scientists and engineers continue to study these extremes to ensure that future missions can navigate and thrive in the lunar environment.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Science

SpaceX Launches 24 Starlink Satellites to Expand Global Internet Coverage

Published

on

By

SpaceX Launches 24 Starlink Satellites to Expand Global Internet Coverage

The first Starlink mission of 2025 was successfully launched by SpaceX from Florida’s Cape Canaveral Space Force Station on January 6, 2025, at 2:13 a.m. IST. A Falcon 9 rocket carried 24 Starlink satellites into orbit, aiming to expand SpaceX’s vast satellite internet network. The launch marked another significant step in SpaceX’s efforts to enhance global connectivity through its growing constellation of satellites.

Details of the Mission

According to a report from space.com, the Falcon 9 rocket’s first stage completed a flawless return to Earth, landing on the droneship “Just Read the Instructions,” positioned in the Atlantic Ocean. This milestone represented the 17th launch and recovery for this particular booster. SpaceX confirmed that this booster has supported 10 prior Starlink missions and was used in the Crew-5 mission, which transported astronauts to the International Space Station.

The upper stage of the rocket is expected to deploy the 24 satellites into low Earth orbit approximately 65 minutes after liftoff. These satellites will join the more than 6,850 active Starlink spacecraft currently operating, as stated to space.com by astrophysicist Jonathan McDowell, who tracks satellite constellations.

Starlink, developed by SpaceX, is the largest satellite network in history. Its purpose is to deliver high-speed internet access globally, including remote and underserved areas. With launches like this, the constellation continues to grow, reinforcing SpaceX’s position as a leader in satellite-based internet services. This launch follows a year of record-breaking achievements for SpaceX, which conducted numerous successful missions in 2024. The company remains focused on accelerating its deployment of satellites, with regular launches planned throughout 2025.

As SpaceX continues its Starlink initiative, its impact on global connectivity and advancements in reusable rocket technology remain noteworthy. The company’s commitment to innovation in space exploration is expected to shape the future of satellite communications.

Catch the latest from the Consumer Electronics Show on Gadgets 360, at our CES 2025 hub.

Continue Reading

Trending