Connect with us

Published

on

NASA’s mission to deflect asteroid is a step towards preparing the world for a potential future asteroid strike like the one which killed the dinosaurs some 66 million years ago, the chances of which are very slim in our lifetime, Indian scientists said.

In a first-of-its-kind mission, the Double Asteroid Redirection Test (DART) spacecraft successfully crashed into an asteroid on Tuesday to test whether space rocks that might threaten Earth in the future could be nudged safely out of the way.

DART – the world’s first planetary defence technology demonstration — targeted the asteroid moonlet Dimorphos, a small body just 160 metres in diameter.

“We are surrounded by several asteroids and comets that orbit our Sun. Very few of them are potentially hazardous to Earth. Hence, It is better to prepare our defenses to avoid such asteroids on a collision course with Earth in the future,” said Chrisphin Karthick, a scientist at the Indian Institute of Astrophysics (IIA), Bengaluru.

Karthick, who is involved in the DART project, noted that the mission “certainly is a step towards” preparing the world for a potential future event like the one which is believed to have led to the extinction of dinosaurs some 66 million years ago.

“This successful DART mission is an example of that. We now know to precisely aim the spacecraft for such a small body. We can also prepare ourselves for the larger body from the post-impact observations of this DART mission,” Karthick told PTI.

Dimorphos orbits a larger 780-metre asteroid called Didymos. Neither asteroid poses a threat to Earth. By comparison, the dinosaur-killing asteroid that hit Earth was about 10 kilometers in diameter.

The DART mission’s one-way trip, confirmed NASA, can successfully navigate a spacecraft to intentionally collide with an asteroid to deflect it, a technique known as kinetic impact.

Goutam Chattopadhyay, a senior scientist at NASA’s Jet Propulsion Laboratory (JPL) in the US also noted that the mission will help to prepare for a future-threatening asteroid.

“DART is an experimental mission to try out a concept of deflecting an asteroid. The idea is, if we can encounter these asteroids whose trajectory is towards us and we do that at a sufficient distance from the Earth, then a minor deflection will be enough to change the path of the asteroid,” he added.

However, scientists noted that most of the asteroids, which are somewhat significant in size and can cause damage on impact with the Earth, have a minuscule chance of hitting the planet.

“However, the probability of that is non-zero and we must always be vigilant. There is always a possibility that a big one might be headed towards us and the question becomes, what would be our approach and how we could mitigate that. That’s why these programs are important,” Chattopadhyay told PTI.

“At least for the next century, there is no such threat from the known asteroids that can cause mass casualties,” said Karthick, adding that this risk assessment is, however, based on the asteroids known to science so far.

Small asteroids are always hitting the Earth all the time but they burn due to the heat generated in the atmosphere. However, for sufficiently large asteroids, that is not the case as the outer core will burn but there will be sufficient mass left to create damage.

The team will now observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos.

Researchers expect the impact to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes; precisely measuring how much the asteroid was deflected is one of the primary purposes of the full-scale test.

“Post impact, the team will observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos,” Karthick said.

“The expected output of the impact is to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes. One of the primary goals is to measure the deflection of the asteroid’s orbit,” he added.

However, Chattopadhyay said whether the mission has been able to deflect the orbit of the asteroid will be known only once all the data has been collected.

“I would emphasise that our calculations and small-scale lab experiments show that it might work well,”. he added NASA has a multi prong approach to monitor Near Earth Asteroids (NEAs). The space agency initiated observations program in 1998. Most discoveries are supported by ground-based telescopic surveys, “We primarily use radars and lidars for this. Mostly they are ground-based systems. However, our existing satellites in space are also used to image and track these objects,” the scientist added.

Lidar is a method for determining distance by targeting an object or a surface with a laser and measuring the time for the reflected light.

“The DART mission is humanity’s first attempt to alter the trajectory of an asteroid by crashing a human made object into it. Today’s successful impact is a big step forward in that direction.

“However, to know the eventual success of this concept, we have to wait a few more years by when any significant change in the trajectory would be clearly apparent,” said Dibyendu Nandi, space scientist at Indian Institutes of Science Education and Research, Kolkata.


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

Gemini North Telescope Spots Interstellar Comet 3I/ATLAS Racing Through Solar System

Published

on

By

Gemini North Telescope Spots Interstellar Comet 3I/ATLAS Racing Through Solar System

A rare interstellar object has been spotted in our solar system, making it the second known object to cross over from outside our cosmic neighbourhood and arrive near our planet. 3I/ATLAS is seen here while about 290 million miles (465 million kilometres) from Earth, when it was journeying inbound on its trip to our vicinity of the solar system. This icy wanderer, first detected by the ATLAS survey on July 1, marks just the third known object from beyond our solar system to be identified, following in the cosmic footsteps of 1I/’Oumuamua and 2I/Borisov.

Massive Interstellar Comet 3I/ATLAS Offers Rare Glimpse Into Alien Planetary System Origins

As per a statement from the National Science Foundation’s NOIRLab, which oversees the International Gemini Observatory, 3I/ATLAS offers a valuable chance to study the building blocks of alien planetary systems. “The sensitivity and scheduling agility of the International Gemini Observatory has provided critical early characterisation of this interstellar wanderer,” mentioned NSF program director Martin Still. At an estimated 12 miles (20 km) in diameter, 3I/ATLAS is much larger than its predecessors, making it easier to analyse.

Images show the comet with a bright, compact coma — the envelope of dust and gas surrounding its core — and other data suggest it could be older than our own solar system. Believed to have originated from the Milky Way’s outer thick disk, 3I/ATLAS may hold clues to the conditions in far-off star systems that once harboured it. Though the discovery is thrilling to some, the comet poses no threat to the Earth as it makes its fleeting visit.

Comet 3I/ATLAS is expected to make its closest pass by the Sun on Oct. 30, when it will fly 130 million miles inside the orbit of Mars. It comes closest to Earth in December, when it is 170 million miles away. Because of its odd orbit, it’s never coming back.

Astronomers around the world are turning toward a piece of an interstellar comet that broke off using a telescope too distant to study, by necessity, as a rare chance to probe the nature of an object from another star and its solar system of origin.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Redmi 15C Price and Specifications Surface Online Via Online Retailer



Adobe Upgrades Firefly Video Model With New Tools and Improved Motion Generation

Continue Reading

Science

NASA Grounds Boeing Starliner Until 2026 After Test Flight Failures

Published

on

By

NASA Grounds Boeing Starliner Until 2026 After Test Flight Failures

The Boeing CST-100 Starliner, a crew capsule for NASA’s Commercial Crew Program, has been plagued by persistent problems. Its first crewed test flight in June 2024 was cut short by technical failures, including helium pressurization leaks and multiple thruster malfunctions. NASA ultimately elected to return Starliner to Earth without its crew, keeping the astronauts aboard the station for safety. With those problems unresolved, NASA now says the capsule will remain grounded until around 2026, and its next mission will likely be uncrewed.

Technical Setbacks and Grounding

According to NASA, During its June 2024 Crew Flight Test, Starliner suffered serious propulsion issues. Multiple helium leaks were detected in the service module’s pressurization system, and five of the capsule’s 28 fine-control thrusters failed during approach to the ISS. NASA and Boeing extended the crew’s station stay while engineers traced the problems to thermal and seal failures in the thruster “doghouse” enclosures.

Ultimately NASA decided to bring Starliner back to Earth empty, concluding the test without its astronauts aboard. Boeing and NASA have since conducted extensive ground testing to validate fixes: engineers at NASA’s White Sands facility are firing thrusters in varied sequences to refine thermal models, and Boeing has added new insulation shunts and thermal barriers in the thruster housings to prevent overheating.

Future of the Starliner Program

Boeing’s delays have reshaped NASA’s Commercial Crew plans. NASA officials say Starliner may even fly one more uncrewed test before carrying astronauts. Starliner development is now billions over budget: its original $4.2 billion contract has grown by roughly $2 billion in extra costs. Meanwhile, SpaceX’s Crew Dragon has flown 11 ISS crew missions and its NASA contract has climbed toward $5 billion amid extra flights added while Starliner lagged. NASA still views Starliner as a critical backup to Dragon and aims to certify it for crew rotations by late 2025 or early 2026.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Samsung Galaxy S26 Ultra Said to Offer Slightly Larger Screen and Narrower Bezels



Google’s Veo 3 Video Generation AI Model Debuts on Gemini API, Pricing and Features Announced

Related Stories

Continue Reading

Science

Quantum Leap: Scientists Achieve Magic State Distillation on Logical Qubits for the First Time

Published

on

By

Quantum Leap: Scientists Achieve Magic State Distillation on Logical Qubits for the First Time

Scientists have shown the elusive phenomenon of quantum computing that could create the way for fault-tolerant machines, which are much powerful than any of the supercomputers. Magic state distillation is the process which was proposed 20 years ago; however, the use of logical qubits has puzzled scientists since then. It has long been considered crucial for making high-quality resources, called magic states, required to complete the quantum computer’s potential. It has been possible on plains, till now, by which the high-quality magic states are purified so that the complex algorithms can use them. It has not been possible on the logical qubits.

According to Science Daily, the groups of physical qubits sharing the same data are configured for detecting and correcting the errors which frequently disturb the quantum computing operations. However, the scientists with QuEra said that they have demonstrated magic state distillation for the first time on logical qubits. The findings were published on July 14, 2025, in the journal Nature.

Path to Fault-tolerant Quantum Computing

Quantum computers would not be fulfilling their promise without this process. They use qubits as their building blocks and make use of quantum logic, the set of rules and operations that control how quantum information is processed for running the algorithms and processing data. It is challenging to run the complex algorithms together with maintaining amazingly low error rates.

Physical qubits are noisy, which implies that the calculations are often disrupted by factors such as temperature fluctuations and electromagnetic radiation. This is the reason why so much research has taken place on Quantum Error Correction.

With the distillation process, the faithfulness of the magic state increased for any input. This shows that the fault-tolerant magic state distillation has worked in practice. Further, it implies that the quantum computer uses both logical qubits and magic states of higher quality for running non-Clifford gates.

Scientists say that the shift has been observed for a few years. It was challenging to make the quantum computers, with the detection and correction of errors. However, the scientists have successfully done it.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Lava Blaze Dragon India Launch Set for July 25; Design and Amazon Availability Confirmed



Samsung Galaxy S26 Ultra Said to Offer Slightly Larger Screen and Narrower Bezels

Continue Reading

Trending