Connect with us

Published

on

NASA’s mission to deflect asteroid is a step towards preparing the world for a potential future asteroid strike like the one which killed the dinosaurs some 66 million years ago, the chances of which are very slim in our lifetime, Indian scientists said.

In a first-of-its-kind mission, the Double Asteroid Redirection Test (DART) spacecraft successfully crashed into an asteroid on Tuesday to test whether space rocks that might threaten Earth in the future could be nudged safely out of the way.

DART – the world’s first planetary defence technology demonstration — targeted the asteroid moonlet Dimorphos, a small body just 160 metres in diameter.

“We are surrounded by several asteroids and comets that orbit our Sun. Very few of them are potentially hazardous to Earth. Hence, It is better to prepare our defenses to avoid such asteroids on a collision course with Earth in the future,” said Chrisphin Karthick, a scientist at the Indian Institute of Astrophysics (IIA), Bengaluru.

Karthick, who is involved in the DART project, noted that the mission “certainly is a step towards” preparing the world for a potential future event like the one which is believed to have led to the extinction of dinosaurs some 66 million years ago.

“This successful DART mission is an example of that. We now know to precisely aim the spacecraft for such a small body. We can also prepare ourselves for the larger body from the post-impact observations of this DART mission,” Karthick told PTI.

Dimorphos orbits a larger 780-metre asteroid called Didymos. Neither asteroid poses a threat to Earth. By comparison, the dinosaur-killing asteroid that hit Earth was about 10 kilometers in diameter.

The DART mission’s one-way trip, confirmed NASA, can successfully navigate a spacecraft to intentionally collide with an asteroid to deflect it, a technique known as kinetic impact.

Goutam Chattopadhyay, a senior scientist at NASA’s Jet Propulsion Laboratory (JPL) in the US also noted that the mission will help to prepare for a future-threatening asteroid.

“DART is an experimental mission to try out a concept of deflecting an asteroid. The idea is, if we can encounter these asteroids whose trajectory is towards us and we do that at a sufficient distance from the Earth, then a minor deflection will be enough to change the path of the asteroid,” he added.

However, scientists noted that most of the asteroids, which are somewhat significant in size and can cause damage on impact with the Earth, have a minuscule chance of hitting the planet.

“However, the probability of that is non-zero and we must always be vigilant. There is always a possibility that a big one might be headed towards us and the question becomes, what would be our approach and how we could mitigate that. That’s why these programs are important,” Chattopadhyay told PTI.

“At least for the next century, there is no such threat from the known asteroids that can cause mass casualties,” said Karthick, adding that this risk assessment is, however, based on the asteroids known to science so far.

Small asteroids are always hitting the Earth all the time but they burn due to the heat generated in the atmosphere. However, for sufficiently large asteroids, that is not the case as the outer core will burn but there will be sufficient mass left to create damage.

The team will now observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos.

Researchers expect the impact to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes; precisely measuring how much the asteroid was deflected is one of the primary purposes of the full-scale test.

“Post impact, the team will observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos,” Karthick said.

“The expected output of the impact is to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes. One of the primary goals is to measure the deflection of the asteroid’s orbit,” he added.

However, Chattopadhyay said whether the mission has been able to deflect the orbit of the asteroid will be known only once all the data has been collected.

“I would emphasise that our calculations and small-scale lab experiments show that it might work well,”. he added NASA has a multi prong approach to monitor Near Earth Asteroids (NEAs). The space agency initiated observations program in 1998. Most discoveries are supported by ground-based telescopic surveys, “We primarily use radars and lidars for this. Mostly they are ground-based systems. However, our existing satellites in space are also used to image and track these objects,” the scientist added.

Lidar is a method for determining distance by targeting an object or a surface with a laser and measuring the time for the reflected light.

“The DART mission is humanity’s first attempt to alter the trajectory of an asteroid by crashing a human made object into it. Today’s successful impact is a big step forward in that direction.

“However, to know the eventual success of this concept, we have to wait a few more years by when any significant change in the trajectory would be clearly apparent,” said Dibyendu Nandi, space scientist at Indian Institutes of Science Education and Research, Kolkata.


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

NASA’s SPHEREx Mission Sends First Space Images Before Full Sky Survey

Published

on

By

NASA’s SPHEREx Mission Sends First Space Images Before Full Sky Survey

NASA’s SPHEREx mission has sent back its first images from space. This marks an important step before it begins the full survey of the sky. The space telescope, which was launched on March 11, 2025, is designed to scan millions of galaxies and collect data in infrared light. On March 27, its detectors captured uncalibrated images that show thousands of light sources, including distant stars and galaxies. The images, processed with added colours for infrared wavelengths, confirm that SPHEREx is operating as expected. Once fully operational, the telescope will take 600 exposures daily and map the entire sky four times during its two-year mission.

Recorded Images Reveals Interesting Details

According to NASA’s SPHEREx mission, the observatory’s six detectors recorded images of the same area of the sky, providing a wide field of view. The top three images represent one portion of the sky, while the bottom three cover the same section. As per the report, the SPHEREx catpured each image with around 100,000 light sources. As per multiple reports, scientists can now learn more about what celestial objects and its distance from Earth with the help of infrared wavelengths. The data from SPHEREx will also help researchers to explore the origins of water in the Milky Way. Moreover, it might also help the scientists to find more clues about the universe’s earliest moments.

Olivier Doré, SPHEREx project scientist at NASA’s Jet Propulsion Laboratory (JPL) and Caltech, told NASA that the telescope is functioning as intended. The infrared light detected by SPHEREx is invisible to human eyes, but colour mapping enables researchers to visualise and analyse it. The observatory’s unique design includes 17 infrared wavelength bands for each detector, creating a total of 102 hues in every six-image capture.

How the Telescope Works

Unlike Hubble or the James Webb Space Telescope, which focuses on specific areas of space, SPHEREx is built for large-scale surveys. It uses spectroscopy to break down light and identify chemical compositions and distances of celestial bodies. Light entering the telescope is divided into two paths, each leading to three detectors. Specialised filters process the incoming wavelengths, allowing for detailed observations of millions of cosmic sources.

Beth Fabinsky, deputy project manager at JPL, said in NASA’s official statement that the successful image capture represents a major milestone. The telescope has also reached its target operating temperature of minus 350 degrees Fahrenheit, crucial for detecting faint infrared signals. Since focusing cannot be adjusted after launch, mission engineers verified the accuracy of the telescope’s optics before sending it into space.

Jamie Bock, principal investigator at JPL and Caltech, confirmed in NASA’s report that the telescope is performing as expected. Engineers will continue testing before the observatory begins routine operations in late April.

Continue Reading

Science

Iceland’s Grindavík town evacuated as volcanic fissure erupts with lava!

Published

on

By

Iceland’s Grindavík town evacuated as volcanic fissure erupts with lava!

A volcanic fissure has emerged near Grindavík on Iceland’s Reykjanes Peninsula after a series of strong earthquakes. Lava has breached the town’s defence barriers. The Icelandic Meteorological Office (IMO) has warned that the fissure may continue to expand. The eruption began along the Sundhnúkur crater row early in the morning. By 9:45 a.m. local time, a fissure stretching nearly 1,200 metres had opened north of Grindavík. The crack is moving southward. Officials have raised the hazard level to the highest risk category.

Evacuations and Road Closures

According to the IMO, a second fissure has appeared inside Grindavík’s protective barriers. Authorities have evacuated the town along with the Blue Lagoon spa. Roads in and out of the area have been shut. Some residents have refused to leave. Local media outlet Visir has reported that emergency services remain on high alert.

Impact of Volcanic Gas

Weather forecasts indicate that volcanic gas will be carried northeastward towards Reykjavík. The capital is located about 40 kilometres away. The IMO has stated that by tomorrow morning, changing wind patterns may direct the gas southwest and eastward. Residents have been told to remain indoors as much as possible while closely monitoring air quality updates. Reykjanes Peninsula has experienced about 11 eruptions since 2021. Eight have occurred along the Sundhnúkur crater row since last year. Scientists continue to monitor the situation closely. Authorities have urged people to avoid the affected region.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Battleground Reality Show OTT Release: Where to Watch it Online?



Ghibli Effect: ChatGPT Usage Hits Record After Rollout of Viral Feature

Related Stories

Continue Reading

Science

JWST Captures Unseen Details of Exoplanets in HR 8799 and 51 Eridani Systems

Published

on

By

JWST Captures Unseen Details of Exoplanets in HR 8799 and 51 Eridani Systems

Astronomers have released new images of planets within the HR 8799 and 51 Eridani star systems. The James Webb Space Telescope (JWST) was used in a way that was different from standard procedures to achieve these results. Capturing direct images of exoplanets is challenging due to the brightness of host stars, which often obscures planetary details. To allow more light through, researchers adjusted JWST’s coronagraphs. This helps in enhancing the visibility of these distant worlds. This adjustment provided clearer insights into planetary atmospheres and their compositions.

Unconventional Use of JWST’s Coronagraphs

According to a study published in The Astrophysical Journal Letters, lead author William Balmer, a Ph.D. candidate at Johns Hopkins University, explained to Space.com that a thinner part of the coronagraph mask was used. This allowed more starlight to diffract, reducing the risk of completely obscuring planets. Coronagraphs typically block starlight to reveal faint celestial bodies, but this modification provided a balance between removing excessive glare and preserving planetary details.

Key Discoveries and Observations

The JWST’s mid-infrared imaging captured HR 8799 at 4.6 microns. It is a wavelength that is mainly blocked by Earth’s atmosphere. Balmer stated that previous ground-based attempts had failed, demonstrating JWST’s stability in detecting exoplanets. Observations at 4.3 microns were also conducted. This revealed the presence of carbon dioxide. It is a very important step in determining the planetary formation processes. The detected carbon dioxide levels suggested that these planets likely formed through core accretion, gathering heavy elements over time.

Future Research and Expanding Studies

There are many research planned to study the four additional planetary systems. Balmer’s team has been allocated more JWST observation time to confirm whether similar gas giants formed through core accretion. This could offer more insights into the stability of planetary systems and potential habitability of smaller, unseen planets.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


macOS Sequoia 15.4 Update Fixes Several Vulnerabilities; Adds Redesigned Mail App, New Apple Intelligence Features



Battleground Reality Show OTT Release: Where to Watch it Online?

Related Stories

Continue Reading

Trending