Connect with us

Published

on

NASA’s mission to deflect asteroid is a step towards preparing the world for a potential future asteroid strike like the one which killed the dinosaurs some 66 million years ago, the chances of which are very slim in our lifetime, Indian scientists said.

In a first-of-its-kind mission, the Double Asteroid Redirection Test (DART) spacecraft successfully crashed into an asteroid on Tuesday to test whether space rocks that might threaten Earth in the future could be nudged safely out of the way.

DART – the world’s first planetary defence technology demonstration — targeted the asteroid moonlet Dimorphos, a small body just 160 metres in diameter.

“We are surrounded by several asteroids and comets that orbit our Sun. Very few of them are potentially hazardous to Earth. Hence, It is better to prepare our defenses to avoid such asteroids on a collision course with Earth in the future,” said Chrisphin Karthick, a scientist at the Indian Institute of Astrophysics (IIA), Bengaluru.

Karthick, who is involved in the DART project, noted that the mission “certainly is a step towards” preparing the world for a potential future event like the one which is believed to have led to the extinction of dinosaurs some 66 million years ago.

“This successful DART mission is an example of that. We now know to precisely aim the spacecraft for such a small body. We can also prepare ourselves for the larger body from the post-impact observations of this DART mission,” Karthick told PTI.

Dimorphos orbits a larger 780-metre asteroid called Didymos. Neither asteroid poses a threat to Earth. By comparison, the dinosaur-killing asteroid that hit Earth was about 10 kilometers in diameter.

The DART mission’s one-way trip, confirmed NASA, can successfully navigate a spacecraft to intentionally collide with an asteroid to deflect it, a technique known as kinetic impact.

Goutam Chattopadhyay, a senior scientist at NASA’s Jet Propulsion Laboratory (JPL) in the US also noted that the mission will help to prepare for a future-threatening asteroid.

“DART is an experimental mission to try out a concept of deflecting an asteroid. The idea is, if we can encounter these asteroids whose trajectory is towards us and we do that at a sufficient distance from the Earth, then a minor deflection will be enough to change the path of the asteroid,” he added.

However, scientists noted that most of the asteroids, which are somewhat significant in size and can cause damage on impact with the Earth, have a minuscule chance of hitting the planet.

“However, the probability of that is non-zero and we must always be vigilant. There is always a possibility that a big one might be headed towards us and the question becomes, what would be our approach and how we could mitigate that. That’s why these programs are important,” Chattopadhyay told PTI.

“At least for the next century, there is no such threat from the known asteroids that can cause mass casualties,” said Karthick, adding that this risk assessment is, however, based on the asteroids known to science so far.

Small asteroids are always hitting the Earth all the time but they burn due to the heat generated in the atmosphere. However, for sufficiently large asteroids, that is not the case as the outer core will burn but there will be sufficient mass left to create damage.

The team will now observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos.

Researchers expect the impact to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes; precisely measuring how much the asteroid was deflected is one of the primary purposes of the full-scale test.

“Post impact, the team will observe Dimorphos using ground-based telescopes to confirm that DART’s impact altered the asteroid’s orbit around Didymos,” Karthick said.

“The expected output of the impact is to shorten Dimorphos’ orbit by about 1 per cent, or roughly 10 minutes. One of the primary goals is to measure the deflection of the asteroid’s orbit,” he added.

However, Chattopadhyay said whether the mission has been able to deflect the orbit of the asteroid will be known only once all the data has been collected.

“I would emphasise that our calculations and small-scale lab experiments show that it might work well,”. he added NASA has a multi prong approach to monitor Near Earth Asteroids (NEAs). The space agency initiated observations program in 1998. Most discoveries are supported by ground-based telescopic surveys, “We primarily use radars and lidars for this. Mostly they are ground-based systems. However, our existing satellites in space are also used to image and track these objects,” the scientist added.

Lidar is a method for determining distance by targeting an object or a surface with a laser and measuring the time for the reflected light.

“The DART mission is humanity’s first attempt to alter the trajectory of an asteroid by crashing a human made object into it. Today’s successful impact is a big step forward in that direction.

“However, to know the eventual success of this concept, we have to wait a few more years by when any significant change in the trajectory would be clearly apparent,” said Dibyendu Nandi, space scientist at Indian Institutes of Science Education and Research, Kolkata.


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Continue Reading

Science

NASA’s EZIE Satellites Begin Mission to Study Auroral Electrojets and Space Weather

Published

on

By

NASA’s EZIE Satellites Begin Mission to Study Auroral Electrojets and Space Weather

Under the night sky in California, NASA’s Electrojet Zeeman Imaging Explorer (EZIE) mission was launched aboard a SpaceX Falcon 9 rocket at 11:43 p.m. PDT on March 14 from Vandenberg Space Force Base. Three small satellites, designed to study Earth’s auroral electrojets, were carried into orbit. The deployment of these satellites was confirmed at approximately 2 a.m. PDT on March 15. Over the next ten days, signals will be transmitted to ensure they are functioning properly before commencing their 18-month mission.

Mission Objectives and Scientific Significance

According to the mission details shared by NASA, EZIE’s satellites will operate in a formation known as “pearls-on-a-string,” flying between 260 and 370 miles above Earth. These satellites will map the intense electrical currents that flow through the upper atmosphere in polar regions. These currents, linked to solar storms, influence auroras and Earth’s magnetic field. The study aims to improve understanding of space weather and its effects on technology, including satellite operations and communication systems.

Speaking to NASA, Jared Leisner, Program Executive for EZIE, stated that small-scale missions like EZIE are being prioritised for their scientific value despite their inherent risks. The data collected will contribute to research not only about Earth but also about magnetic interactions on other planets.

Unique Approach to Orbit Control

Instead of traditional propulsion methods, EZIE satellites will utilise atmospheric drag to adjust their positions. As reported by NASA’s Goddard Space Flight Center, Larry Kepko, EZIE’s mission scientist, explained that previous studies have focused on either large or small-scale observations of these currents. EZIE’s approach will provide new insights into their formation and evolution.

Public Engagement and Educational Outreach

To expand public participation, magnetometer kits known as EZIE-Mag are being distributed to students and science enthusiasts. Data collected from these kits will be integrated with EZIE’s space-based measurements to provide a more detailed understanding of Earth’s electrical currents.
The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center and funded by NASA’s Heliophysics Division. The Johns Hopkins Applied Physics Laboratory leads the project, with CubeSats developed by Blue Canyon Technologies and magnetometers built by NASA’s Jet Propulsion Laboratory.

Continue Reading

Science

Antarctic Ice Melt Weakens Strongest Ocean Current, Disrupting Global Circulation

Published

on

By

Antarctic Ice Melt Weakens Strongest Ocean Current, Disrupting Global Circulation

Earth’s most powerful ocean current is losing strength, with potential consequences for global ocean circulation. Scientists have projected that the Antarctic Circumpolar Current (ACC) could slow down by as much as 20 percent by 2050. The weakening of this current, which connects multiple oceans and regulates heat exchange, is being attributed to the increasing influx of cold meltwater from Antarctica. This shift in ocean dynamics could have far-reaching effects on sea levels, temperatures, and marine ecosystems worldwide.

Findings from Climate Modelling

According to a study published in Environmental Research Letters, a team led by Bishakhdatta Gayen, a fluid mechanist at the University of Melbourne, has analysed how Antarctic ice melt is affecting the ACC. Using one of Australia’s most advanced climate simulators, researchers modelled interactions between the ice sheet and ocean waters. The study indicates that the introduction of fresh, cold meltwater weakens the current by altering ocean density and reducing convection between surface and deep waters.

Consequences of a Slower Current

The slowdown of the ACC is expected to disrupt global ocean circulation. As convection weakens, warm water may travel further into Antarctic waters, accelerating ice melt and contributing to rising sea levels. The weakening current could also allow invasive species to reach the Antarctic coastline, affecting the region’s ecosystem.

Speaking to Live Science, Gayen compared the process to a “merry-go-round,” explaining that a slower current could lead to faster migration of marine organisms toward Antarctica. Long-term monitoring will be necessary to fully understand these changes, as scientists have only recently begun studying the ACC’s behaviour in detail. The impact of these shifts will not remain confined to Antarctica but will influence ocean circulation patterns across the planet.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


James Webb Space Telescope Captures Hourglass Nebula LBN 483 in Stunning Detail



Crime Patrol Now Streaming on Netflix, New Episodes Every Monday

Continue Reading

Science

Wolf-Rayet 104’s Orbit Tilt Reduces Gamma-Ray Burst Threat, Study Finds

Published

on

By

Wolf-Rayet 104's Orbit Tilt Reduces Gamma-Ray Burst Threat, Study Finds

A new study has shed light on the orbital alignment of the well-known Wolf-Rayet 104 (WR 104) system, long considered a potential threat due to its speculated gamma-ray burst (GRB) risk. Observations conducted using multiple instruments at the W. M. Keck Observatory in Hawaiʻi have confirmed that the star system‘s orbit is tilted 30 to 40 degrees away from Earth. This discovery significantly reduces concerns that a supernova from WR 104 could direct a GRB toward the planet.

Study Confirms Orbital Tilt

According to research published in the Monthly Notices of the Royal Astronomical Society, WR 104 comprises two massive stars locked in an eight-month orbital cycle. The system features a Wolf-Rayet star emitting a strong carbon-rich wind and an OB star producing a hydrogen-dominated stellar wind. Their collision generates a distinctive dust spiral that glows in infrared light.

The structure was first observed in 1999 at the Keck Observatory, and early models suggested that the pinwheel-like dust formation was face-on from Earth’s perspective. This led to speculation that the rotational axis of the stars—and potentially a GRB—could be aimed directly at Earth. However, new spectroscopic data contradicts this assumption.

Unexpected Findings Challenge Previous Models

Reportedly, Grant Hill, Instrument Scientist and astronomer, stated, that their view of the pinwheel dust spiral from Earth absolutely looked face-on and it seemed like a pretty safe assumption that the two stars are orbiting the same way. However, his analysis revealed a surprising discrepancy, with the stellar orbit misaligned from the dust structure.

This unexpected finding raises new questions about how the dust plume forms and whether additional factors influence its shape. While the discovery brings relief regarding potential GRB risks, it also suggests there is still much to understand about WR 104’s unique characteristics

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


PebbleOS-Powered Core 2 Duo and Core Time 2 Smartwatches Unveiled; Pre-Orders Go Live



Apple’s Passwords App Had a Security Flaw That Exposed Users to Phishing Attacks for Three Months

Continue Reading

Trending