Connect with us

Published

on

Adani Group will invest $100 billion (roughly Rs. 8,14,200 crore) over the next decade, primarily in new energy and digital space that includes data centres, Chairman Gautam Adani said on Tuesday, as the group bets big on India growth story.

As much as 70 percent of this investment will be in the energy transition space, Adani, the world’s second-richest person, said as he continued to reveal bit by bit the group’s new energy plans.

The ports-to-energy conglomerate will add 45 gigawatts of hybrid renewable power generation capacity and build 3 Giga factories to manufacture solar panels, wind turbines and hydrogen electrolyser.

“As a Group, we will invest over $100 billion of capital in the next decade. We have earmarked 70 per cent of this investment for the energy transition space,” Adani, founder and chairman of Adani Group, said at the Forbes Global CEO conference in Singapore.

Starting off with a modest commodities business in 1988, the 60-year-old tycoon surpassed Jeff Bezos of Amazon, French business magnate Bernard Arnault and American businessman Bill Gates to become the world’s second-wealthiest person with a fortune of $143 billion (roughly Rs. 11,64,000 crore).

With interests spanning sea ports, airports, green energy, cement and data centres, the combined market capitalisation of the group’s listed companies is $260 billion (roughly Rs. 21,16,300 crore).

The group is already the world’s largest solar player.

“In addition to our existing 20 GW renewables portfolio, the new business will be augmented by another 45 GW of hybrid renewable power generation spread over 100,000 hectares of land – an area 1.4 times that of Singapore. This will lead to commercialisation of three million metric tonne of green hydrogen,” he said.

It will also build 3 Giga factories – one for a 10 GW silicon-based photovoltaic value-chain that will be backward-integrated from raw silicon to solar panels, a 10GW integrated wind-turbine manufacturing facility, and a 5 GW hydrogen electrolyser factory.

“Today, we can confidently state that we have a line of sight to first – become one of the least expensive producers of the green electron — and thereafter — the least expensive producer of green hydrogen,” he said.

Digital space, he said, seeks to benefit from the energy transition adjacency.

“The Indian data centre market is witnessing explosive growth. This sector consumes more energy than any other industry in the world and therefore our move to build green data centres is a game-changing differentiator,” he said.

The group plans to interconnect data centres through a series of terrestrial and globally linked undersea cables drawn at its ports and build consumer-based super-apps that will bring hundreds of millions of Adani’s B2C consumers on one common digital platform.

“We also just finished building the world’s largest sustainability cloud that already has a hundred of our solar and wind sites running on it — all off a single giant command and control centre that will soon be augmented by a global A-I lab,” he said.

These new businesses will add to the burgeoning Adani empire which already is the largest airports and sea ports operator in India. It is the nation’s highest valued FMCG company, the second-largest cement manufacturer and the largest integrated energy player.

“The point I would like to make is that — India is full of incredible opportunities. The real India growth story is just starting.

“This is the best window for companies to embrace India’s economic resurgence and the incredible multi-decade tailwind the world’s largest and most youthful democracy offers. India’s next three decades will be the most defining years for the impact it will have on the world,” he added.

Commenting on China, Adani said once the champion of globalisation, that country is facing challenges.

“I anticipate that China – that was seen as the foremost champion of globalisation – will feel increasingly isolated. Increasing nationalism, supply chain risk mitigation, and technology restrictions will have an impact,” Adani said.


Affiliate links may be automatically generated – see our ethics statement for details.

Continue Reading

Science

Mice now use VR headsets to help scientists study brain activity and behaviour

Published

on

By

Mice now use VR headsets to help scientists study brain activity and behaviour

Innovative VR headsets have been designed for mice, enabling scientists to study brain activity in highly immersive environments. Using these headsets, researchers can observe neural responses during specific behaviours, potentially unlocking new understanding of human neurological disorders. Crafted from readily available components such as smartwatch screens and miniature lenses, these devices are seen as a breakthrough in neuroscience research, offering precise insights into how mammals interact with their surroundings.

Development and Functionality of the Headsets

According to a study published in Nature Methods, the VR headsets—known as “MouseGoggles”—are paired with a spherical treadmill that keeps the mice stationary while simulating movement. These goggles attach to the mice’s heads, displaying sharp, high-contrast visuals that mimic real-world experiences. Dr. Matthew Isaacson, a postdoctoral researcher at Cornell University, stated in a press release that prior methods using projector screens failed to engage mice effectively, but the new goggles produced significant behavioural responses, such as startled reactions to simulated predators.

Verification of the Technology

To confirm the efficacy of the MouseGoggles, researchers examined activity in two critical brain regions. The primary visual cortex revealed that the mice could perceive the projected images clearly, while the hippocampus indicated accurate mapping of virtual environments. These findings underline the potential for the technology to deepen understanding of how mammals navigate and interact with their surroundings.

Future Applications and Advancements

Dr. Chris Schaffer, Professor of Biomedical Engineering at Cornell, noted to phys.org that these headsets could transform neuroscience by enabling the study of naturalistic behaviours. Plans are underway to create lightweight versions for larger rodents like rats and to incorporate sensory elements such as smell and taste into the VR experience. This expanded capability could provide more comprehensive insights into complex decision-making processes and sensory integration.
The research team believes this technology could significantly enhance studies into conditions like Alzheimer’s, offering critical understanding of spatial navigation and memory deficits.

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Stalker 2, Spider-Man 2, Starfield: Best Holiday Season Deals on Steam, PlayStation and Xbox Games



Apple’s Foldable iPhone Tipped to Launch in September 2026 With Cutting-Edge Technology

Continue Reading

Science

How Human Activity Fuels Pandemics: Climate Change and Biodiversity at the Core

Published

on

By

How Human Activity Fuels Pandemics: Climate Change and Biodiversity at the Core

The rise in pandemics has been attributed to disruptions caused by human activities to the planet’s ecosystems. Infectious diseases, which have historically resulted in significant loss of life, are appearing more frequently. This resurgence has raised concerns among experts about the factors driving this trend. Modern advancements in science, including vaccinations and antibiotics, initially seemed to have controlled these outbreaks. Yet, the occurrence of diseases such as HIV/AIDS, SARS, and COVID-19 highlights the ongoing challenges.

Ecosystem Disruption and Its Role

According to a study published by researchers from the University of Adelaide, the disruption of ecosystems is central to the emergence of pandemics. Healthy ecosystems regulate diseases by maintaining natural balances, including predator-prey dynamics and vegetation growth. However, activities such as deforestation, climate change, and biodiversity loss have altered these balances, enabling pathogens to spread more easily. For instance, changes in climate have allowed disease-carrying mosquitoes to expand their range into previously temperate regions.

The Impact of Biodiversity Loss

Reports have indicated that biodiversity loss has created opportunities for pathogens to move from wildlife to humans. The case of vampire bats in South America is often cited, where deforestation and agricultural expansion provided new feeding grounds, leading to the spread of rabies. Similarly, the HIV virus emerged through the hunting of apes for food, eventually spreading globally. These examples underscore the link between human activity and the rise of zoonotic diseases.

The Importance of Planetary Health

Experts advocate for a “planetary health” approach, emphasising the interdependence of human health and the natural environment. This strategy aims to address fundamental drivers like climate change while also tackling immediate causes such as wildlife-human interactions. Educational institutions are increasingly integrating planetary health into their curricula to equip future leaders with tools to mitigate pandemic risks effectively.

It is widely believed that without addressing the root causes, the likelihood of future pandemics remains significant. Efforts to balance human development with ecological preservation have been suggested as key to safeguarding global health.

Continue Reading

Science

Parker Solar Probe to make record-breaking Sun flyby on Christmas Eve

Published

on

By

Parker Solar Probe to make record-breaking Sun flyby on Christmas Eve

The Parker Solar Probe, a mission by NASA, is set to make its closest approach to the Sun on Christmas Eve, December 24, 2024. This milestone flyby is expected to occur at precisely 6:53 a.m. EST, as reported by multiple sources. The spacecraft will reach an unprecedented proximity of 6.1 million kilometers from the Sun’s surface, marking the 22nd close encounter of its mission. This approach represents a record-breaking moment in space exploration, achieved through seven Venus flybys that incrementally brought the probe closer to the Sun.

Details of the Flyby

According to mission updates from NASA and the Johns Hopkins Applied Physics Laboratory (JHUAPL), the Parker Solar Probe will travel at a staggering speed of 692,000 kilometers per hour during its journey through the Sun’s outer atmosphere, or corona. This high-speed encounter aims to shed light on the corona’s extreme temperatures and its role in solar wind generation. The probe’s heat shield, built to endure temperatures up to 1,377 degrees Celsius, will ensure the spacecraft remains operational as it navigates the intense environment.

Updates and Tracking

While the event itself will not be broadcast live, updates will be provided through NASA’s official channels and the Parker Solar Probe mission blog. A status check from the spacecraft is expected on December 27, followed by the first telemetry data on January 1, 2025. The initial scientific findings, including data on solar activity, are anticipated by late January.

What Comes Next

This flyby is part of the probe’s seven-year mission, concluding in 2025 after a total of 24 solar encounters. Subsequent flybys in March and June 2025 will continue to gather valuable data, with decisions about the probe’s orbit to be made thereafter, as per the mission team’s updates.

Continue Reading

Trending